MOTION IN A STRAIGHT LINE

- From the top of a tower two stones, whose masses are in the ratio 1:2 are thrown one straight up with an initial speed u and the second straight down with the same speed u. Then, neglecting air resistance
 - a) The heavier stone hits the ground with a higher speed
 - b) The lighter stone hits the ground with a higher speed
 - c) Both the stones will have the same speed when they hit the ground
 - d) The speed can't be determined with the give data
- A body is travelling in a straight line with a uniformly increasing speed. Which one of the plot represents the change in distance (s) travelled with time (t)?

- A body is thrown vertically upwards. If air resistance is to be taken into account, then the time during which the body rises is
 - a) Equal to the time of fall

b) Less than the time of fall

c) Greater than the time of fall

- d) Twice the time of fall
- A body of 5 kg is moving with a velocity of 20m/s. If a force of 100N is applied on it for 10s in the same direction as its velocity, what will now be the velocity of the body
 - a) 200 m/s
- b) $220 \, m/s$
- c) $240 \, m/s$
- d) $260 \, m/s$
- A particle when thrown, moves such that it passes from same height at 2 and 10s, the height is 5.

b) 2g

c) 5g

- d) 10g
- Two trains one of 100 m and another of length 125m, are moving in mutually opposite directions along parallel lines, meet each other, each with speed 10m/s.
 - If their acceleration are $0.3m/s^2$ and $0.2m/s^2$ respectively, then the time taken to pass each other will be

- b) 10 s
- c) 15 s
- 7. A ball is dropped downwards. After 1 second another ball is dropped downwards from the same point. What is the distance between them after 3 seconds
 - a) 25 m
- b) 20 m
- c) 50 m
- d) 9.8 m

8.	A balloon rises from rest with a constant acceleration $g/8$. A stone is released from it when it has risen to
	height h. The time taken by the stone to reach the ground is

a)
$$4\sqrt{\frac{h}{g}}$$

b)
$$2\sqrt{\frac{h}{g}}$$

c)
$$\sqrt{\frac{2h}{g}}$$

d)
$$\sqrt{\frac{g}{h}}$$

A particle starts from rest at t = 0 and undergoes an acceleration a in ms^{-2} with time t in seconds which is as shown

Which one of the following plot represents velocity V in ms^{-1} versus time t in seconds

10. The acceleration due to gravity on the planet A is 9 times the acceleration due to gravity on the planet B. A man jumps to a height of 2m on the surface of A. What is the height of jump by the same person on the planet B

c)
$$\frac{2}{3}m$$

d)
$$\frac{2}{9}m$$

11. A parachutist after bailing out falls 50 m without friction. When parachute opens, it decelerates at 2 m/s^2 . He reaches the ground with a speed of 3 m/s. At what height, did he bail out

- 12. Two spheres of same size, one of mas 2 kg and another of mass 4 kg, are dropped simultaneously from the top of Qutub Minar (height = 72m). When they are 1 m above the ground, the two spheres have the same
 - a) Momentum
- b) Kinetic energy
- c) Potential energy
- d) Acceleration
- 13. A boy walks to his school at a distance of 6km with constant speed of 2.5 km/hour and walks back with a constant speed of 4 km/hr. His average speed for round trip expressed in km/hour, is

14. A car moving with a velocity of 10 m/s can be stopped by the application of a constant force F in a distance of 20 m. If the velocity of the car is 30 m/s. It can be stopped by this force in

a)
$$\frac{20}{3}m$$

15. One car moving on a straight road covers one third of the distance with $20 \, km/hr$ and the rest with 60 km/hr. The average speed is

a)
$$40 \, km/hr$$

c)
$$46\frac{2}{3} \, km/hr$$

16. A body starts from rest, with uniform acceleration. If its velocity after n seconds is v,then its displacement in the last two seconds is

a)
$$\frac{2v(n+1)}{n}$$

b)
$$\frac{v(n+1)}{n}$$
 c) $\frac{v(n-1)}{n}$ d) $\frac{2v(n-1)}{n}$

c)
$$\frac{v(n-1)}{n}$$

d)
$$\frac{2v(n-1)}{n}$$

17. A packet is dropped from a balloon which is going upwards with the velocity 12 m/s, the velocity of the packet after 2 seconds will be

a)
$$-12 \, m/s$$

b)
$$12 \, m/s$$

c)
$$-7.6 \, m/s$$

d)
$$7.6 \, m/s$$

18. v - t graph for a particle is as shown. The distance travelled in the first 4 s is

a) 12m

b) 16m

c) 20m

d) 24m

19. A body, thrown upwards with some velocity, reaches the maximum height of 20m. Another body with double the mass thrown up, with double initial velocity will reach a maximum height of

a) 200 m

b) 16 m

c) 80 m

d) 40 m

20. A body is falling freely under gravity. The distances covered by the body in first, second and third minute of its motion are in the ratio

a) 1:4:9

b) 1:2:3

c) 1:3:5

d) 1:5:6

21. If a body starts from rest and travels 120 cm in the 6^{th} second, then what is the acceleration

a) $0.20 \, m/s^2$

b) $0.027 \, m/s^2$

c) $0.218m/s^2$

d) $0.03m/s^2$

22. A particle starts from rest. Its acceleration (a) versus time (t) is as shown in the figure. The maximum speed of the particle will be

a) $110 \, m/s$

b) $55 \, m/s$

c) $550 \, m/s$

d) 660 m/s

23. Two bodies of different masses are dropped from heights of 16 m and 25 m respectively. The ratio of the time taken by them to reach the ground is

24. The coordinates of a moving particle at any time t are given by $x = \alpha t^3$ and $y = \beta t^3$. The speed of the particle at time t is given by

a) $3t\sqrt{\alpha^2 + \beta^2}$

b) $3t^2\sqrt{\alpha^2+\beta^2}$

c) $t^2\sqrt{\alpha^2+\beta^2}$

d) $\sqrt{\alpha^2 + \beta^2}$

25. A ball is dropped on the floor from a height of 10 m. It rebounds to a height of 2.5m. If the ball is in contact with the floor for 0.01 sec, the average acceleration during contact is

a) $2100 \, m/ \sec^2$ downwards

b) $2100 \, m/ \sec^2$ upwards

c) $1400 \, m/ \sec^2$

d) $700m/\sec^2$

26. The time taken by a block of wood (initially at rest) to slide down a smooth inclined plane 9.8 m long (angle of inclination is 30°) is

a) $\frac{1}{2}$ sec

b) 2sec

c) 4sec

d) 1sec

27. From the top of a tower, a particle is thrown vertically downwards with a velocity of 10 m /sec. The ratio of the distances, covered by it in the 3^{rd} and 2^{nd} seconds of the motion is (Take $g = 10 \text{ m/s}^2$)

a) 5:7

b) 7:5

c) 3:6

d) 6:3

28. A particle moves for 20 s with velocity 3 ms⁻¹ and then moves with velocity 4 ms⁻¹ for another 20 s and finally moves with velocity 5 ms⁻¹ for next 20 s. What is the average velocity of the particle?

a) 3 ms^{-1}

b) 4 ms^{-1}

c) 5 ms^{-1}

d) Zero

29.	An express train is moving with a velocity v_1 . Its driver finds another train is moving on the same track in the same direction with velocity v_2 . To escape collision, driver applies a retardation a on the train. The minimum time of escaping collision will be					
	a) $t = \frac{v_1 - v_2}{v_1 + v_2}$	b) $t = \frac{v_1^2 - v_2^2}{2}$	c) None	d) Both		
30.		to the total section of the contract of the co		at. Which of the following		
	a) $y = y + at^2$	b) $v = u + a \frac{t^2}{2}$	c) $n = n \pm at$	d) $n = n$		
176210		2				
31.	(FP)	first 5 sec and 10m in next	3 sec. Assuming constant a	icceleration what is the		
	distance travelled in next a) $8.3 m$	b) 9.3 m	c) 10.3 m	d) None of above		
32.		h an acceleration of 1 ms $^{-2}$		The state of the s		
02.		The man will be able to ca		a the bus starts running at		
	a) 6 s	b) 5 s	c) 3 s	d) 8 s		
33.	The acceleration of a part	ticle is increasing linearly w	with time t as bt . The particl	e starts from the origin		
		. The distance travelled by				
	a) $v_{o}t + \frac{1}{2}ht^{2}$	b) $v_0 t + \frac{1}{3} b t^3$	c) $v_0 t + \frac{1}{2} h t^3$	d) $v_0 t + \frac{1}{2} h t^2$		
	3	3	· ·	2		
34.		wooden block loses half of	its velocity after penetration	on 40 cm. It comes to rest		
	after penetrating a furthe	40	20	22		
	a) $\frac{22}{3}$ cm	b) $\frac{40}{3}$ cm	c) $\frac{20}{3}$ cm	d) $\frac{22}{5}$ cm		
35.	A particle is moving on a	straight line path with cons hich of the following stater	stant acceleration directed	along the direction of		
	a) Particle may reverse th	ne direction of motion				
	b) Distance covered is no	t equal to magnitude of dis	placement			
	그래 그래 그리고 있는데 그리는 그리고 있다면 하나요?	age velocity is less than ave	erage speed			
	d) All of the above	Vie 0 2 2 791	927 W 20 1907/0 1907/0			
36.		with some velocity reaches	garanta de la companya de la compan Para la companya de	resemble to the confidence of the comment of the contract of t		
		up with double the initial v	5	10 To		
27	a) 100 m	b) 200 m	c) 300 m	d) 400 m		
3/.		ly up with a velocity u. It pa				
	174.440	respectively. The ratio of th	e separations between poi	nts A and B between		
	B and C, ie, $\frac{AB}{BC}$ is					
	a) 1	b) 2	c) $\frac{10}{7}$	d) $\frac{20}{7}$		
20	1.	c		/		
38.		from a station and accelera				
	two stations is	decelerated at 4 ms ⁻² until	it stopped at the next stati	on. The distance between		
	a) 650 m	b) 700 m	c) 750 m	d) 800 m		
39		ards. After 1 second anothe	\$150 BURNEY BURNEY			
07.	and the state of t	veen them after 3 seconds	r ban is aropped downwar	as from the same point		
	a) 25 m	b) 20 m	c) 50 m	d) 9.8 m		
40.	(3 5)	70 km/hr in a straight roa	*			
		a petrol pump at a distance				
	your drive till you reach t	he petrol pump is				
	a) 16.8 km/hr	b) 35 km/hr	c) 64 km/hr	d) 18.6 km/hr		
41.	An object is dropped from	n rest. Its <i>v-t</i> graph is				

- 42. A particle is thrown vertically upwards. If it velocity at half of the maximum height is $10 \, m/sec$, then maximum height attained by it is (Take $g = 10 \text{ m/sec}^2$)

- b) 10 m
- c) 12 m
- d) 16 m

43. Which graph represents the uniform acceleration

44. What is the relation between displacement, time and acceleration in case of a body having uniform acceleration

a)
$$S = ut + \frac{1}{2}ft^2$$

b)
$$S = (u + f) t$$

c)
$$S = v^2 - 2fs$$

- d) None of these
- 45. The acceleration 'a' in m/s^2 of a particle is given by $a = 3t^2 + 2t + 2$ where t is the time. If the particle starts out with a velocity u = 2m/s at t = 0, then the velocity at the end of 2 seconds is
- b) $18 \, m/s$
- c) 27 m/s
- 46. Two bodies are thrown simultaneously from a tower with same initial velocity v_0 : one vertically upwards, the other vertically downwards. The distance between the two bodies after time t is

a)
$$2v_0t + \frac{1}{2}gt^2$$

b)
$$2v_0t$$

c)
$$v_0 t + \frac{1}{2} g t^2$$

- 47. An aeroplane files 400 m north and 300 m south and then files 1200 m upwards then net displacement is
 - a) 1200 m
- b) 1300 m
- c) 1400 m
- 48. The displacement of a particle undergoing rectilinear motion along the x-axis is given by $x = (2t^2 + t^2)$ $21t^2 + 60t + 6$). The acceleration of the particle when its velocity is zero is
 - a) 36ms^{-2}
- b) 9ms⁻²
- d) -18ms^{-2}
- 49. A river is flowing from W to E with a speed of 5 m/min. A man can swim in still water with a velocity 10 m/min. In which direction should the man swim so as to take the shortest possible path to go to the south
 - a) 30° with downstream
 - b) 60° with downstream
 - c) 120° with downstream
 - d) South
- 50. The numerical ratio of displacement to the distance covered is always
 - a) Less than one

b) Equal to one

c) Equal to or less than one

- d) Equal to or greater than one
- 51. From the top of tower, a stone is thrown up. It reaches the ground in t_1 second. A second stone thrown down with the same speed reaches the ground in t_2 second. A third stone released from rest reaches the ground in t_3 second. Then
 - a) $t_3 = \frac{(t_1 + t_2)}{2}$ b) $t_3 = \sqrt{t_1 t_2}$
- c) $\frac{1}{t_3} = \frac{1}{t_1} \frac{1}{t_2}$ d) $t_3^2 = t_2^2 t_1^2$
- 52. One car moving on a straight road covers one third of the distance with $20 \, km/hr$ and the rest with 60 km/hr. The average speed is
 - a) 40 km/hr
- b) $80 \, km/hr$
- c) $46\frac{2}{3} \, km/hr$

53.	A particle starts from	rest, acceleration at 2 r	n/s^2 for 10 s and then goes	with constant speed for 30 s and
	then decelerates at 4	m/s^2 till it stops. What	is the distance travelled by	it
	a) 750 m	b) 800 m	c) 700 m	d) 850 m
54.	Acceleration of a part	ticle changes when		
	a) Direction of veloci	ty changes	b) Magnitude of ve	elocity changes
	c) Both of above		d) Speed changes	
55.	A cat moves from X to	o Y with a uniform spee	d v_u and returns to X with a	a uniform speed v_d . The average
	speed for this ground	l trip is		
	a) $-\frac{2v_dv_u}{v_d+v_u}$	b) /22 22	c) $\frac{v_d v_u}{v_d + v_u}$	d) $\frac{v_u + v_d}{2}$
	u		-u·-u	4
56.	A boat takes two hou	rs to travel 8 km and ba	ck in still water. If the velo	city of water 4 kmh $^{-1}$, the time
	taken for going ups to	ream 8km and coming b	ack is	
	a) 2h		b) 2 h 40 min	
	c) 1 h 20 min			nated with the information given
57.	A person travels alon	g a straight road for the	first half time with a veloc	ity $v_{ m 1}$ and the next half time with a
	velocity v_2			
	The mean velocity V	of the man is		
	2 1 1	$v_1 + v_2$		v_1
	a) $\frac{1}{V} = \frac{1}{v_1} + \frac{1}{v_2}$	b) $V = \frac{1}{2}$	c) $V = \sqrt{v_1 v_2}$	d) $V = \left \frac{1}{v_2} \right $
50	A particle is projected	d with velocity 11 along	r - axis The deceleration	on the particle is proportional to
50.			$a = -ax^2$. The distance at	
	a) $\sqrt{\frac{3v_0}{2\alpha}}$	b) $(\frac{3v_0}{3})^{\frac{3}{3}}$	c) $\sqrt{\frac{3v_0^2}{2\alpha}}$	d) $\left(\frac{3v_0^2}{2\alpha}\right)^{\frac{1}{3}}$
	2α	(2α)	$\sqrt{2\alpha}$	$(\frac{1}{2\alpha})$
59.	Two balls are droppe	d to the ground from di	fferent heights. One ball is	dropped 2 s after the other but
	they both strike the g	round at the same time	. If the first ball takes 5 s to	reach the ground, then the
		eights is $(g = 10 \text{ ms}^{-2})$		
	a) 20 m	b) 80 m	c) 170 m	d) 40 m
60.	A body starts from or	rigin and moves along x	-axis such that at any instar	In the velocity is $v_t = 4t^3 - 2t$ where t
	is in second and v_t in		of the particle when it is 21	m from the origin is
	a) 28ms^{-2}	b) 22ms ⁻²	c) 12ms ⁻²	d) 10ms ⁻²
61.	A truck and a car are	moving with equal velo	city. On applying the brake	s both will stop after certain
	distance, then			
	a) Truck will cover le	ss distance before rest	b) Car will cover le	ess distance before rest
	c) Both will cover equ		d) None	
62.	[BB] [1882] [BB]		city $'v'$ after it falls through	a height 'h'.
	The distance it has to	fall down for its velocit	y to become double, is	
	a) 2h	b) 4h	c) 6h	d) 8 <i>h</i>
63.			T. C.	h equal speeds of $40m/s$. The
		1976		ust $2.0km$ apart. Assuming the
				arely avoid collision should be
	a) $11.8 m/s^2$	b) $11.0 \ m/s^2$	c) $2.1 m/s^2$	d) $0.8 m/s^2$
64.		of displacement to the d	istance covered is always	
	a) Less than one		b) Equal to one	
	c) Equal to or less tha		d) Equal to or grea	
65.	0.74			ous begins its motion with an
				h a uniform velocity u . Assuming
		g a straight road, the m	inimum value of u , so that t	he student is able to catch the bus
	is			

CLICK HERE >>>

- a) 8 ms^{-1}
- b) 5 ms^{-1}
- c) 12 ms^{-1}
- d) 10 ms^{-1}
- 66. A cat moves from X to Y with a uniform speed v_u and returns to X with a uniform speed v_d . The average speed for this ground trip is
 - $a) \frac{2v_d v_u}{v_d + v_u}$
- c) $\frac{v_d v_u}{v_d + v_u}$
- d) $\frac{v_u + v_d}{2}$

67. The graph of displacement v/s time is

Its corresponding velocity-time graph will be

68. Figures (i) and (ii) below show the displacement-time graphs of two particles moving along the x-axis. We can say that

- a) Both the particles are having a uniformly accelerated motion
- b) Both the particles are having a uniformly retarded motion
- c) Particle (i) is having a uniformly accelerated motion while particle (ii) is having a uniformly retarded motion
- d) Particle (i) is having a uniformly retarded motion while particle (ii) is having a uniformly accelerated motion
- 69. Consider the acceleration, velocity and displacement of a tennis ball as it falls to the ground and bounces back. Directions of which of these changes in the process
 - a) Velocity only

- b) Displacement and velocity
- c) Acceleration, velocity and displacement
- d) Displacement and acceleration
- 70. A lift in which a man is standing, is moving upward with a speed of 10ms⁻¹. The man drops a coin from a height of 4.9m and if $g = 9.8 \text{ ms}^{-2}$, then the coin reaches the floor of the lift after a time

c) $\frac{1}{2}$ s

- 71. Two balls are dropped to the ground from different heights. One ball is dropped 2s after the other but they both strike the ground at the same time. If the first ball takes 5s to reach the ground, then the difference in initial heights is $(g = 10 \text{ ms}^{-2})$
 - a) 20m
- b) 80m
- c) 170m
- 72. The displacement of a particle starting from rest (at t = 0) is given by $s = 6t^2 t^3$. The time in seconds at which the particle will attain zero velocity again, is
 - a) 2

b) 4

c) 6

- d) 8
- 73. A body falls from rest in the gravitational field of the earth. The distance travelled in the fifth second of its motion is $(g = 10 m/s^2)$
 - a) 25m
- b) 45m
- c) 90m
- d) 125m
- 74. A body is moving with uniform acceleration covers 200 m in the first 2 s and 220 m in the next 4 s. find the velocity in ms⁻¹ after 7 s.

	a) 10	b) 15	c) 20	d) 30			
75.	75. A ball is dropped on the floor from a height of 10m. It rebounds to a height of 2.5m. If the ball is in contact with the floor for 0.01 s, the average acceleration during contact is nearly [Take $g = 10 \text{ms}^{-2}$]						
		TO SERVICE THE RESIDENCE OF SECTION AND SECTION OF THE SECTION OF SECTION SECTIONS.		And the second s			
	a) $500\sqrt{2} \text{ ms}^{-2}\text{upwards}$		b) 1800 ms ⁻² downward				
	c) $1500\sqrt{5} \text{ ms}^{-2} \text{upward}$		d) $1500\sqrt{2} \text{ ms}^{-2} \text{downw}$				
76.		ly upwards with an initial v	elocity 1.4 ms ⁻¹ returns in	2 s. The total displacement			
	of the ball will be		to the collection of the first of the collection				
	a) 22.4 m	b) Zero	c) 33.6	d) 44.8 m			
77.			traight line with an acceler	ation as shown below. The			
	velocity of the particle a	t t = 3s is					
	²⁸ / _H + 4						
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_					
	1 2 3 4→Tir	ne(s)					
	A - 4						
	a) $2 ms^{-1}$	b) $4 ms^{-1}$	c) $6 ms^{-1}$	d) $8 ms^{-1}$			
78.			and the second s	d the bus starts running at			
		s. The man will be able to ca		0			
	a) 6s	b) 5s	c) 3s	d) 8s			
79.	A truck and a car are mo	ving with equal velocity. O	n applying the brakes both	will stop after certain			
	distance, then						
	a) Truck will cover less	distance before rest	b) Car will cover less dis	tance before rest			
	c) Both will cover equal	distance	d) None				
80.	1770	aching the point from which					
	a) $v = 0$	b) $v = 2u$	c) $v = 0.5u$	d) v = u			
81.		on a straight track with a c	an an aidithe an aidith a th' Carl an ann an aidithe a' fhair an aidithe an a				
	-			site direction of the motion			
			orm directly in front of that	t passenger. The velocity of			
	the passenger appears to a) $4 ms^{-1}$	o be	b) $2 ms^{-1}$				
		e direction of the train					
82		t moves with constant acce		nce covered by the body			
02.	during the 5th sec to that		reration. The ratio of dista	nce covered by the body			
	a) 9/15	b) 3/5	c) 25/9	d) 1/25			
83.		n a frictionless inclined plar	(f) (47/)				
	freely			,			
	a) Both will reach with s	same speed	b) Both will reach with t	he same acceleration			
	c) Both will reach in san	ne time	d) None of above				
84.	A car moving with speed	l of $40 km/h$ can be stoppe	d by applying brakes after	atleast 2 m . If the same car is			
	moving with a speed of	30 km/h, what is the minim	num stopping distance				
	a) 8 m	b) 2 m	c) 4 m	d) 6 m			
85.	550	cle varies with time t as $x =$	$= at^2 - bt^3$. The acceleration	on of the particle will be zero			
	at time t equal to	3_					
	a) $\frac{a}{b}$	b) $\frac{2a}{3b}$	c) $\frac{a}{3b}$	d) Zero			
86	18 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30		x (in metres) of the particle			
00.			- (becomes) are distance	(meace) of the particle			
	from <i>O</i> is given by $x = 40 + 12t - t^3$						
		ticle travel before coming t	o rest				
		ticle travel before coming t b) 40 m	o rest c) 56 m	d) 16 m			
	How long would the par			d) 16 m			

- 87. A stone dropped from a balloon which is at a height h, reaches the ground after t second. From the same balloon, if two stones are thrown, one upwards and the other downwards, with the same velocity u and they reach the ground after t_1 and t_2 second respectively, then
 - a) $t = t_1 t_2$
- b) $t = \frac{t_1 + t_2}{2}$
- d) $t = \sqrt{t_1^2 t_2^2}$
- 88. The acceleration of a particle increases linearly with time t as 6t. If the initial velocity of the particle is zero and the particle starts from the origin, then the distance travelled by the particle in time t will be
 - a) t

- 89. The graph between the displacement x and t for a particle moving in a straight line is shown in figure. During the interval OA, AB, BC and CD, the acceleration of the particle is

OA, AB, BC, CD

- a) + 0 +
- c) +
- d) -
- 90. The distance travelled by a particle is proportional to the square of time, then the particle travels with
 - a) Uniform acceleration

b) Uniform velocity

c) Increasing acceleration

- d) Decreasing velocity
- 91. Two balls A and B of same masses are thrown from the top of the building. A, thrown upward with velocity V and B, thrown downward with velocity V, then
 - a) Velocity of A is more than B at the ground
- b) Velocity of B is more than A at the ground
- c) Both A & B strike the ground with same velocity d) None of these
- 92. A man drops a ball downside from the roof of a tower of height 400 m. At the same time another ball is thrown upside with a velocity 50 m/s. From the surface of the tower, then they will meet at which height from the surface of the tower
 - a) 100 m
- b) 320 m
- c) 80 m
- d) 240 m
- 93. If the velocity of particle is given by $v = (180 16x)^{1/2} m/s$, then its acceleration will be
 - a) Zero
- b) $8 m/s^2$
- c) $-8 \, m/s^2$
- d) $4 m/s^2$
- 94. The displacement-time graphs of two moving particles make angles of 30° and 45° with the x —axis. The ratio of their velocities is

- a) $1 : \sqrt{3}$
- b) 1:2
- c) 1:1
- 95. The given graph shows the variation of velocity with displacement. Which one of the graph given below correctly represents the variation of acceleration with displacement?

- 96. A balloon starts rising from the ground with an acceleration of 1.25 m/s^2 after 8s, a stone is released from the balloon. The stone will $(g 10 m/s^2)$
 - a) Reach the ground in 4 second

b) Begin to move down after being released

c) Have a displacement of 50 m

- d) Cover a distance of 40 m in reaching the ground
- 97. In a race for 100m dash, the first and the second runners have a gap of one metre at the mid way stage. Assuming the first runner goes steady, by what percentage should the second runner increases his speed just to win the race.
 - a) 2%
- b) 4%

- c) More than 4%
- d) Less than 4%
- 98. The driver of a car moving with a speed of 10ms^{-1} sees a red light ahead, applies breaks and stops after covering 10m distance. If the same car were moving with a speed of 20 ms^{-2} , the same driver would have stopped the car after covering 30 m distance. Within what distance the car can be stopped if travelling with a velocity of 15ms^{-1} ? Assume the same reaction time and the same deceleration in each case.
 - a) 18.75 m
- b) 20.75 m
- c) 22.75 m
- d) 25 m
- 99. A particle has an initial velocity $3\hat{i} + 4\hat{j}$ and an acceleration of $0.4\hat{i} + 0.3\hat{j}$. Its speed after 10 s is
 - a) 10 unit
- b) 7 unit
- c) $7\sqrt{2}$ unit
- d) 8.5 unit
- 100. A particle moving in a straight line covers half the distance with speed of 3 m/s. The other half of the distance is covered in two equal time intervals with speed of 4.5 m/s and 7.5 m/s respectively. The average speed of the particle during the motion is
 - a) $4.0 \, m/s$
- b) $5.0 \, m/s$
- c) $5.5 \, m/s$
- d) $4.8 \, m/s$
- 101. A body is travelling in a straight line with a uniformly increasing speed. Which one of the plot represents the changes in distance (s) travelled with time (t)

102. A stone is shot straight it strikes the ground is	. N. 1975 (1975)	m/sec from a tower 200 m	high. The speed with which
그리겠었다. 하나 하나 그 사람들이 아니다. 그리아 아니아 아니아 아니아 아니아 아니아 아니아 아니아 아니아 아니아 아	HT 하시네이다. 이번 100 HT	a) 70 m /aaa	d) 75 /
a) 60 m/sec	b) 65 m/sec	c) 70 m/sec	d) 75 m/sec
103. A stone dropped from o		1.00	
a) 80 m	b) 40 m	c) 20 m	d) 160 m
104. A wheel of radius 1 m r		1970)	The magnitude of the
displacement of the poi	nt of wheel initially in cont	act with the ground is	
a) 2π			
b) $\sqrt{2}\pi$			
c) $\sqrt{\pi^2 + 4}$			
d) π			
105. Two stones of equal ma	sses are dropped from a ro	ofton of height h one after	another. Their separation
distance against time w	지구 [2시 시는 지도 시는 사람들이 사용하는 이 경기를 받는 것이다.	ortop or neight it one dite.	anouncer river opportunion
a) Remain the same	b) Increase	c) Decrease	d) Be zero
106. If the velocity of a parti-		the state of the s	The state of the s
5s is	cicis (10 + 2c jings, then	inc average acceleration of	the particle between 23 and
a) $2m/s^2$	b) $4m/s^2$	c) $12m/s^2$	d) $14m/s^2$
107. A train of 150 m length		75 LT (1.00	
- 12 40 - 12 10 10명 [[[[] [] [] [] [] [] [] [] [사람들이 어린 아이는 그렇게 걸어가고 하다 하는 것이 하는데 없는데 없어 없다.	and the first and the second of the second o	en by the parrot to cross the
train is	ui uirection paranei to the	Tallway track. The tille tak	en by the parrot to cross the
	b) 8 sec	a) 1E aaa	d) 10 and
a) 12 sec		, , , , , , , , , , , , , , , , , , , ,	d) 10 sec
108. The engine of motorcyc			17
	20 40 M 및 경영 10 M ()	um time in which it can ov	
a) 30 sec	b) 15 sec	c) 10 sec	d) 5 sec
109. A stone dropped from o			
a) 80 m	b) 40 m	c) 20 m	d) 160 m
110. A police jeep is chasing			. Tarki
	n muzzle velocity of 180 $m_{ m p}$	s. The velocity with which	it will strike the car of the
thiefis		5 1945 W W	Fig. (80,070) VI
a) 150 m/s	b) 27 m/s	c) 450 m/s	
111. A body having uniform doubled?	acceleration of 10ms ⁻² has	s a velocity of 100ms ⁻¹ . In v	what time, the velocity will be
a) 8 s	b) 10 s	c) 12 s	d) 14 s
112. A bullet is fired with a s	peed of $1000 m/sec$ in ord	er to hit a target 100 m awa	ay. If $g = 10 m/s^2$, the gun
should be aimed			
a) Directly towards the	target	b) 5 cm above the targe	t
c) 10 cm above the targ	get	d) 15 cm above the targ	et
113. A particle is moving wit	h uniform acceleration alo	ng a straight line. The avera	ge velocity of the particle
from P to Q is 8ms^{-1} are	d that from Q to S is 12 ms	$^{-1}$. If $QS - PQ$, then the ave	erage velocity from P to S is
277			
O PQS			
a) 9.6ms^{-1}	b) 12.87 ms^{-1}	c) 64 ms ⁻¹	d) 327 ms^{-1}
114. The displacement of a b	ody is given by $2s = gt^2$, w	here g is a constant. The ve	elocity of the body at any time
t is			
2	, , gt	gt^2	d) $\frac{gt^3}{2}$
a) gt	b) $\frac{gt}{2}$	c) $\frac{gt^2}{2}$	$a) = \frac{1}{2}$
115. A body begins to walk e	astward along a street in fi	ont of his house and the gr	aph of his position from
home is shown in the fo	llowing figure. His average	speed for the whole time i	nterval is equal to
			970

- a) 8 m/min
- b) 6 m/min
- c) $\frac{8}{3}$ m/min
- d) 2 m/min
- 116. Which of the following options is correct for the object having a straight line motion represented by the following graph

- The object moves with constantly increasing velocity from O to A and then it moves with constant velocity
- b) Velocity of the object increases uniformly
- c) Average velocity is zero
- d) The graph shown is impossible
- 117. A ball which is at rest is dropped from a height h metre. As it bounces off the floor its speed is 80% of what it was just before touching the ground. The ball then rise to nearly a height
 - a) 0.94 h
- b) 0.80 h
- c) 0.75 h
- d) 0.64 h
- 118. A point starts moving in a straight line with a certain acceleration. At a time t after beginning of motion the acceleration suddenly becomes retardation of the same value. The time in which the point returns to the initial point is
 - a) $\sqrt{2t}$

b) $(2 + \sqrt{2})t$

c) $\frac{t}{\sqrt{2}}$

- d) Cannot be predicted unless acceleration is given
- 119. An elevator car, whose floor to ceiling distance is equal to 2.7m, starts ascending with constant acceleration of $1.2ms^{-2}$. 2 sec after the start, a bolt begins falling from the ceiling of the car. The free fall time of the bolt is
 - a) $\sqrt{0.54}s$
- b) $\sqrt{6} s$
- c) 0.7 s
- d) 1 s
- 120. A man walks on a straight road from his home to a market $2.5 \ km$ away with a speed of $5 \ km/h$. Finding the market closed, he instantly turns and walks back home with a speed of $7.5 \ km/h$. The average speed of the man over the interval of time 0 to $40 \ min$. Is equal to
 - a) 5 km/h
- b) $\frac{25}{4} km/h$
- c) $\frac{30}{4} \, km/h$
- d) $\frac{45}{8} \, km/h$
- 121. A bullet moving with a velocity of $200 \ cm/s$ penetrates a wooden block and comes to rest after traversing 4cm inside it. What velocity is needed for travelling distance of 9cm in same block
 - a) 100 cm/s
- b) 136.2cm/s
- c) 300cm/s
- d) 250 cm/s
- 122. The velocity of a particle is $v = v_0 + gt + ft^2$. If its position is x = 0 at t = 0, then its displacement after unit time (t = 1)is
 - a) $v_0 = 2g + 3f$
- b) $v_0 + g/2 + f/3$
- c) $v_0 + g + f$
- d) $v_0 + g/2 + f$
- 123. A car accelerates from rest at a constant rate a for some time, after which it decelerates at a constant rate β and comes to rest. If the total time elapsed is t, then the maximum velocity acquired by the car is

	1 2		
a) $\left(\frac{\alpha t + \beta^2}{\alpha t}\right) t$	b) $\left(\frac{\alpha^2 - \beta^2}{\alpha^2}\right)t$	c) $\frac{(\alpha + \beta)t}{\alpha}$	d) $\frac{\alpha\beta t}{\alpha + \beta}$
` ' '	` '	en pour	αιρ
and the control of th			nd y = 5t, where x and y
	_		
		3	d) 40 ms^{-2}
		d returns to Y with a unifor	rm speed v_d . The average
: 111 To 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	S	1000 1000	
a) $\frac{2v_dv_u}{}$	b) $\sqrt{v_u v_d}$	c) $\frac{v_d v_u}{}$	d) $\frac{v_u + v_d}{2}$
a tu i tu		va i vu	2
	1774		e and assuming no
	17-70		
			d) 129.6
and the state of the contract			distance covered in first
			N a
			d) $S_2 = S_1$
An object moving with a s	peed of $6.25 m/s$, is deceled	erated at a rate given by $\frac{dv}{dt}$	= $2.5 \sqrt{v}$ where v is the
instantaneous speed. The	time taken by the object, t	o come to rest would be	
a) 1s	b) 2s	c) 4s	d) 8s
A body A moves with a un	iform acceleration a and ${ m z}$	ero initial velocity. Anothei	body B , starts from the
same point moves in the s	came direction with a cons	tant velocity \emph{v} . The two boo	lies meet after a time t. The
value of t is			
2v	b) -	v = v	d) $\sqrt{\frac{v}{2a}}$
$\frac{a}{a}$	u) a	$\frac{c}{2a}$	$\sqrt{2a}$
Two spheres of same size	, one of mas 2 $k \emph{g}$ and anot	her of mass 4 kg , are dropp	ed simultaneously from the
top of Qutub Minar (heig	tht = $72m$). When they are	1 m above the ground, the	two spheres have the same
a) Momentum	b) Kinetic energy	c) Potential energy	u) moodiciation
			d) -0.3 ms^{-2}
The velocity of a body dep	pends on time according to	the equation $v = 20 + 0.1$	t^2 . The body is undergoing
5155		(5)	
	[1] [10] 15 T. H.		e dropped from the same
	ll reach the earth first (air	The first of the state of the s	
		55 S	
(5)	1.T	157/	
	사람이 있었다면 가장에 가장 하는 사람들이 아니는 사람이 되었다면 하는데 없다.		
11 (Table 1) 1 1 1 1 1 1 1 1 1	1700 00 00 00 00 00 00 00 00 00 00 00 00		d) 1:11
		$a x = a + bt^2$ where $a = 15$	$b cm $ and $b = 3 cm/s^2$.Its
		Town Charge Colonic Carrow Carr	III nariiini taliin
	1.50		d) 32 cm/sec
initial velocity (11) of the h	ball and for how much time	e(T) it remained in the air	
) 20 / 11 2	1) 00 / 11 /
a) $u = 10m/s, T = 2s$	b) $u = 10m/s, T = 4s$		d) $u = 20m/s, T = 4s$
a) $u = 10m/s$, $T = 2s$ A stone dropped from a b	b) $u = 10m/s$, $T = 4s$ uilding of height h and it re	eaches after t seconds on ea	arth. From the same
a) $u = 10m/s$, $T = 2s$ A stone dropped from a b building if two stones are	b) $u = 10m/s$, $T = 4s$ uilding of height h and it re thrown (one upwards and	eaches after t seconds on eacher downwards) with the	A STATE OF THE PARTY OF THE PAR
a) $u = 10m/s$, $T = 2s$ A stone dropped from a b building if two stones are	b) $u = 10m/s$, $T = 4s$ uilding of height h and it re	eaches after t seconds on eacher downwards) with the	arth. From the same
	The x and y coordinates of are in metre and t in secona) Zero A car moves from X to Y is speed for this round trip in a) $\frac{2v_dv_u}{v_d+v_u}$ An automobile in travelling same automobile is travels skidding, the minimum stance are also starts its motion 10 seconds is S_1 and that a) $S_2 = 2S_1$ An object moving with a sinstantaneous speed. The a) S_1 and that are speed and S_2 instantaneous speed. The angle S_1 instantaneous speed. The angle S_2 instantaneous speed. The second S_3 instantaneous in the second S_3 instantaneous speed. The second S_3 instantaneous spe	The x and y coordinates of a particles at any time t are in metre and t in second. The acceleration of para a) Zero b) 8ms^{-2} A car moves from X to Y with a uniform speed v_u and speed for this round trip is a) $\frac{2v_dv_u}{v_d+v_u}$ b) $\sqrt{v_uv_d}$ An automobile in travelling at 50 kmh^{-1} , can be stop same automobile is travelling at 90 kmh^{-1} , all other skidding, the minimum stopping distance in metre is a) 72 b) 92.5 A particle starts its motion from rest under the action 10 seconds is S_1 and that covered in the first 10 seconds is S_1 and that covered in the first 10 seconds is S_1 and that covered in the first 10 seconds is 10 seconds with a speed of 10 seconds is 10 seconds with a speed of 10 seconds is 10 seconds with a uniform acceleration 10 seconds and 10 seconds is 10 seconds . The time taken by the object, the algorithm 10 seconds is 10 seconds and 10 seconds and 10 seconds are point moves with a uniform acceleration 10 seconds and 10 seconds is 10 seconds and 10 seconds and 10 seconds are 10 seconds and 10 seconds and 10 seconds are 10 seconds and 10 seconds and 10 seconds are 10 seconds	A car moves from X to Y with a uniform speed v_u and returns to Y with a unifor speed for this round trip is a) $\frac{2v_dv_u}{v_d+v_u}$ b) $\sqrt{v_uv_d}$ c) $\frac{v_dv_u}{v_d+v_u}$ An automobile in travelling at 50 kmh^{-1} , can be stopped at a distance of 40 m b same automobile is travelling at 90 kmh^{-1} , all other conditions remaining sam skidding, the minimum stopping distance in metre is a) 72 b) 92.5 c) 102.6 A particle starts its motion from rest under the action of a constant force. If the 10 seconds is S_1 and that covered in the first 20 seconds is S_2 , then a) $S_2 = 2S_1$ b) $S_2 = 3S_1$ c) $S_2 = 4S_1$ An object moving with a speed of 6.25 m/s , is decelerated at a rate given by $\frac{dv}{dt}$ instantaneous speed. The time taken by the object, to come to rest would be a) $1s$ b) $2s$ c) $4s$ A body A moves with a uniform acceleration a and zero initial velocity. Another same point moves in the same direction with a constant velocity v . The two box value of t is a) $\frac{2v}{a}$ b) $\frac{v}{a}$ c) $\frac{v}{a}$ c) $\frac{v}{2a}$ Two spheres of same size, one of mas $2 kg$ and another of mass $4 kg$, are dropt top of Qutub Minar (height = $72m$). When they are 1 m above the ground, the a) Momentum b) Kinetic energy c) Potential energy A body of mass 10 kg is moving with a constant velocity of 10 ms^{-1} . When a coit, it moves with velocity 2 ms^{-1} in the opposite direction. The acceleration proal 3 ms^{-2} b) -3 ms^{-2} c) 0.3 ms^{-2} The velocity of a body depends on time according to the equation $v = 20 + 0.1$ a) Uniform acceleration b) Uniform acceleration d) Zero acceleration Two balls of same size but the density of one is greater than that of the other and height, then which ball will reach the earth first (air resistance is negligible) a) Heavy ball b) Light ball d) Will depend upon the a body thrown vertically upwards with an initial velocity a reaches maximum of a taken by the distances travelled by the body

CLICK HERE >>>

a)	+	_	t.	_	t.
aj	L	_	41		12

b)
$$t = \frac{t_1 + t_2}{2}$$
 c) $t = \sqrt{t_1 t_2}$ d) $t = t_1^2 t_2^2$

c)
$$t = \sqrt{t_1 t_2}$$

d)
$$t = t_1^2 t_2^2$$

- 138. The relation $3t = \sqrt{3x} + 6$ describes the displacement of a particle in one direction where x is in *metres* and t in sec. The displacement, when velocity is zero, is
- b) 12 metres

- 139. A body of mass m moving along a straight line covers half the distance with a speed of 2ms^{-1} . The remaining half of distance is covered in two equal time intervals with a speed of 3 ms⁻¹ and 5 ms⁻¹ respectively. The average speed of the particle for the entire journey is
 - a) $\frac{3}{8}$ ms⁻¹
- b) $\frac{8}{3}$ ms⁻¹
- c) $\frac{4}{3}$ ms⁻¹
- d) $\frac{16}{3}$ ms⁻¹
- 140. The velocity-time graph of a particle in linear motion is shown. Both v and t are in SI units. What is the displacement of the particle from the origin after 8 s?

a) 6m

b) 8m

- c) 16m
- 141. The distance travelled by an object along a straight line in time t is given by $s = 3 4t + 5t^2$, the initial velocity of the object is
 - a) 3 unit
- b) -3 unit
- c) 4 unit
- d) -4 unit
- 142. The displacement-time graph of moving particle is shown below

The instantaneous velocity of the particle is negative at the point

a) D

b) F

c) C

- 143. Spotting a police car, you brake a parsche from a speed of 100kmh⁻¹ to a speed of 80.0 kmh⁻¹ during a displacement of 88.0m, at a constant acceleration. What is the acceleration?
 - a) -2.5ms^{-2}
- b) 1.58 ms^{-2}
- c) -1.58ms⁻²
- d) 2.5 ms^{-2}
- 144. An aircraft is flying at a height of 34000m above the ground. If the angle subtended at a ground observation point by the aircraft positions 10s apart is 30°, then the speed of the aircraft is
- b) $1963 \, ms^{-1}$
- c) $108 \, ms^{-1}$
- d) $196.3 \, ms^{-1}$
- 145. A particle is projected up with an initial velocity of $80 \, ft/sec$. The ball will be at a height of $96 \, ft$ from the ground after
 - a) 2.0 and 3.0 sec
- b) Only at 3.0 sec
- c) Only at 2.0 sec
- d) After 1 and 2 sec
- 146. A ball A is thrown up vertically with speed u and at the same instant another ball B is released from a height h. At time t, the speed of A relative to B is

b) 2u

- c) u gt
- d) $\sqrt{(u^2-gt)}$
- 147. A body is moving in a straight line a shown in velocity-time graph. The displacement and distance travelled by in 8s are respectively

- a) 12 m, 20 m
- b) 20m, 12 m
- c) 12 m, 12 m
- d) 20 m, 20 m
- 148. The velocity-time and acceleration-time graphs of a particle are given as

Its position-time graph may be given as

- 149. A stone thrown upward with a speed u from the top of the tower reaches the ground with a velocity 3u. The height of the tower is
 - a) $3u^{2}/g$
- b) $4u^{2}/g$
- c) $6u^{2}/g$
- d) $9u^2/g$
- 150. A particle is projected with velocity v_0 along x axis. The deceleration on the particle is proportional to the square of the distance from the origin i.e., $a = -ax^2$. The distance at which the particle stops is
- b) $\left(\frac{3v_0}{2\alpha}\right)^{\frac{1}{3}}$
- d) $\left(\frac{3v_0^2}{2\alpha}\right)^{\frac{1}{3}}$
- 151. A ball is thrown vertically upwards with a velocity of 25 ms⁻¹ from the top of a tower of height 30 m. How long will it travel before it hits ground?
 - a) 6 s

b) 5 s

c) 4 s

- d) 12 s
- 152. The motion of a particle along a straight line is described by equation:

$$x = 8 + 12t - t^3$$

Where x is in metre and t in second. The retardation of the particle when its velocity becomes zero, is

- a) $24ms^{-2}$
- b) Zero
- c) $6ms^{-2}$
- d) $12ms^{-2}$
- 153. A particle starting from rest falls from a certain height. Assuming that the value of acceleration due to gravity remains the same throughout motion, its displacement in three successive half second intervals are S_1 , S_2 , S_3 .
 - Then,
 - a) $S_1: S_2: S_3: 1: 5: 9$
- b) $S_1: S_2: S_3: 1: 2: 3$
- c) $S_1: S_2: S_3: 1: 1: 1$
- d) $S_1: S_2: S_3: 1: 3: 5$
- 154. Two bodies are thrown simultaneously from a tower with same initial velocity v_0 : one vertically upwards, the other vertically downwards. The distance between the two bodies after time t is
 - a) $2v_0t + \frac{1}{2}gt^2$
- b) $2v_0t$
- c) $v_0 t + \frac{1}{2} g t^2$
- 155. An aeroplane files 400 m north and 300 m south and then files 1200 m upwards then net displacement is
- b) 1300 m
- c) 1400 m
- 156. A particle moving in a straight line with uniform acceleration is observed to be a distance a from a fixed point initially. It is at distances b, c, d from the same point after n, 2n, 3n second. The acceleration of the particle is
 - a) $\frac{c-2b+a}{n^2}$
- b) $\frac{c+b+a}{2m^2}$
- c) $\frac{c+2b+a}{4n^2}$ d) $\frac{c-b+a}{n^2}$

- 157. The three initial and final position of a man on the x –axis are given as
 - (i) (-8m, 7m) (ii) (7m, -3m) and (iii) (-7m, 3m)

Which pair gives the negative displacement

a) (i)

b) (ii)

c) (iii)

- d) (i) and (iii)
- 158. A ball is dropped vertically from a height d above the ground. It hits the ground and bounces up vertically to a height d/2. Neglecting subsequent motion and air resistance, its velocity v varies with the height h above the ground as

- 159. The displacement of a particle is given by $y = a + bt + ct^2 dt^4$. The initial velocity and acceleration are respectively
 - a) b, -4d
- b) -b, 2c
- c) b, 2c
- d) 2c, -4d
- 160. Four marbles are dropped from the top of a tower one after the other with an interval of one second. The first one reaches the ground 4 seconds. When the first one reaches the ground the distances between the first and second, the second and third and the third and forth will be respectively
 - a) 35,25 and 15 m
- b) 30,20 and 10 m
- c) 20,10 and 5 m
- d) 40,30 and 20 m
- 161. A body starts from rest. What is the ratio of the distance travelled by the body during the 4th and 3rd second
 - a) $\frac{7}{5}$

b) $\frac{3}{7}$

c) $\frac{7}{3}$

- d) $\frac{3}{7}$
- 162. A boat crosses a river from port A to port B, which are just on the opposite side. The speed of the water is V_W and that of boat is V_B relative to still water. Assume $V_B = 2V_W$. What is the time taken by the boat, if It has to cross the river directly on the AB line
 - a) $\frac{2D}{V_B\sqrt{3}}$
- b) $\frac{\sqrt{3}D}{2V_B}$
- c) $\frac{D}{V_R\sqrt{2}}$
- d) $\frac{D\sqrt{2}}{V_B}$
- 163. Two cars A and B are travelling in the same direction with velocities v_1 and $v_2(v_1 > v_2)$. When the car A is at a distance d behind the car B, the driver of the car A applies the brake producing uniform retardation, a. There will be no collision when

	$(v_1 - v_2)$
a) $d <$	$\left({2a} \right)$

b)
$$d > \frac{v_1^2 - v_2^2}{2a}$$

b)
$$d > \frac{v_1^2 - v_2^2}{2a}$$
 c) $d > \frac{(v_1 - v_2)^2}{2a}$ d) $d < \frac{v_1^2 - v_2^2}{2a}$

d)
$$d < \frac{v_1^2 - v_2^2}{2a}$$

- 164. A bird flies for 4 s with a velocity of |t-2|m/s in a straight line, where t is time in seconds. It covers a distance of
 - a) 2 m

- b) 4 m
- c) 6 m

- d) 8 m
- 165. If a body loses half of its velocity on penetrating 3 cm in a wooden block, then how much will it penetrate more before coming to rest?
 - a) 1 cm
- b) 2 cm
- c) 3 cm
- d) 4 cm
- 166. A body, thrown upwards with some velocity, reaches the maximum height of 20m. Another body with double the mass thrown up, with double initial velocity will reach a maximum height of
 - a) 200 m
- b) 16 m

- 167. A bullet comes out of the barrel of gun of length 2m with a speed 80 ms⁻¹. The average acceleration of the
 - a) 1.6 ms^{-2}
- b) 160 ms^{-2}
- c) 1600 ms⁻²
- d) 16 ms^{-2}
- 168. The position of a particle moving along x-axis at certain times is given below:

t(s)	0	1	2	3
x(m)	-2	0	6	16

Which of the following describes the motion correctly

- a) Uniform accelerated
- b) Uniform decelerated
- c) Non-uniform accelerated
- d) There is not enough data for generalization
- 169. Which of the following options is correct for the object having a straight line motion represented by the following graph?

- The object moves with constantly increasing velocity from *O* to *A* and then it moves with constant velocity.
- b) Velocity of the object increases uniformly
- c) Average velocity is zero
- d) The graph shown is impossible
- 170. A body dropped from top of a tower fall through 60 m during the last two second of its fall. The height of tower is $(g = 10 \text{ ms}^{-2})$
 - a) 95 m
- b) 60 m
- c) 80 m
- d) 90 m
- 171. A stone is allowed to fall from the top of a tower 100m high and at the same time another stone is projected vertically upwards from the ground with a velocity of 254ms⁻¹. The two stones will meet after
 - a) 4 s

- b) $0.4 \, s$
- c) 0.04 s
- d) 40 s
- 172. Speed of two identical cars u and 4u at a specific instant. The ratio of the respective distances in which the two cars are stopped from that instant is
 - a) 1:1

- c) 1:8

- d) 1:16
- 173. Which of the following speed-time graphs exist in the nature?

- d) All of the above
- $174. \ The \ motion \ of a particle along a straight line is described by equation :$

$$x = 8 + 12t - t^3$$

Where x is in metre and t in second. The retardation of the particle when its velocity becomes zero, is

- a) $24ms^{-2}$
- b) Zero
- c) $6ms^{-2}$
- d) $12ms^{-2}$
- 175. If a train travelling at 72 *kmph* is to be brought to rest in a distance of 200 metres, then its retardation should be
 - a) $20 \, ms^{-2}$
- b) $10 \, ms^{-2}$
- c) $2 ms^{-2}$
- d) $1ms^{-2}$
- 176. From a high tower at time t=0, one stone is dropped from rest and simultaneously another stone is projected vertically up with an initial velocity. The graph of the distance S between the two stones, before either his the ground, plotted against time t will be as

177. Rain drops fall vertically at a speed of 20ms^{-1} . At what angle do they fall on the wind screen of a car moving with a velocity of 15ms^{-1} , if the wind screen velocity inclined at an angle of 23° to the vertical?

$$\left(\cot^{-1}\left[\frac{4}{3}\right]\approx 36^{\circ}\right)$$

a) 60°

b) 30°

c) 45°

- d) 90°
- 178. Two trains travelling on the same track are approaching each other with equal speeds of 40ms⁻¹. The drivers of the trains begin to decelerate simultaneously when they are just 2 km apart. If the decelerations are both uniform and equal, then the value of deceleration to barely avoid collision should be
 - a) 0.8ms^{-2}
- b) 2.1 ms^{-2}
- c) 11.0 ms^{-2}
- d) 13.2 ms^{-2}
- 179. A ball of mass m_1 and another ball of mass m_2 are dropped from equal height. If time taken by the balls are t_1 and t_2 respectively, then
 - a) $t_1 = \frac{t_2}{2}$
- b) $t_1 = t_2$
- c) $t_1 = 4t_2$
- d) $t_1 = \frac{t_2}{4}$
- 180. A particle moves along a straight line OX. At a time t (in seconds) the distance x (in metres) of the particle from O is given by $x = 40 + 12t t^3$

How long would the particle travel before coming to rest

- a) 24 m
- b) 40 m
- c) 56 m
- d) 16 m
- 181. Which of the following velocity-time graphs represent uniform motion

- 182. The distance-time graphs of a particle at time t makes angle 45° with the time axis. After two seconds, it makes an angle 60° with the time axis. What is the average acceleration of the particle?
 - a) 1/2
- b) $\sqrt{3}/2$
- c) $(\sqrt{3}-1)/2$
- d) $(\sqrt{3} + 1)/2$
- 183. A scooterist sees a bus 1 km ahead of him moving with a velocity of 10 ms⁻¹. With what speed the scooterist should move so as to overtake the bus in 100 s?
 - a) 10 ms^{-1}
- b) 15 ms^{-1}
- c) 20 ms⁻¹
- d) 17 ms^{-1}
- 184. A particle has initial velocity $(2\hat{i} + 3\hat{j})$ and acceleration $(0.3\hat{i} + 0.2\hat{j})$. The magnitude of velocity after 10 seconds will be
 - a) $9\sqrt{2}$ units
- b) $5\sqrt{2}$ units
- c) 5 units
- d) 9 units
- 185. A rocket is fired upwards. Its engine explodes fully is 12s. The height reached by the rocket as calculated from its velocity-time graph is

- a) $1200 \times 60 \text{ m}$
- b) 1200×132 m
- c) $\frac{1200}{12}$ m
- d) 1200×12^2 m
- 186. Figure given shows the distance -time graph of the motion of a car. It follows from the graph that the car is

a) At rest

b) In uniform motion

c) In non-uniform acceleration

- d) Uniformly accelerated
- 187. An object start sliding on a frictionless inclined plane and from same height another object start falling freely
 - a) Both will reach with same speed
- b) Both will reach with the same acceleration

c) Both will reach in same time

- d) None of above
- 188. Three persons P, Q and R of same mass travel with same speed u such that each one faces the other always. After how much time will they meet each other?

	p/			
	$R \xrightarrow{u} R$			
	a) d/u sec	b) 2 <i>d</i> /3 <i>u</i> sec	c) $2d/\sqrt{(3)}u$ sec	d) $d/\sqrt{3u}$ sec
189.	A body is released from th		a. It takes <i>t sec</i> to reach the	
	ball after time $t/2$ sec			
	a) At $h/2$ from the ground			
	b) At $h/4$ from the ground	1		
	c) Depends upon mass an	d volume of the body		
	d) At $3h/4$ from the groun	d		
190.	You drive a car at seed of	70 km/hr in a straight roa	d for $8.4 km$, and then the α	car runs out of petrol. You
	walk for 30 min to reach a	petrol pump at a distance	of 2 km. The average veloc	city from the beginning of
	your drive till you reach th	ne petrol pump is		
	a) 16.8 km/hr	b) 35 km/hr	c) 64 km/hr	d) 18.6 km/hr
191.	A ball P is dropped vertical	ally and another ball $\it Q$ is th	rown horizontally with the	same velocities from the
		ne time. If air resistance is	neglected, then	
	a) Ball P reaches the grou	nd first		
	b) Ball Q reaches the grou			
	c) Both reach the ground a			
	and the second s	of the two balls will decide		200 00 00 -000 W 4
	AND SECTION OF THE SECTION OF SECTION OF THE SECTION OF SECTION OF SECTION OF SECTION OF SECTION OF SECTION OF		tion. When parachute open	s, it decelerates at 2 m/s^2
	7051	th a speed of 3 m/s . At wha	0	
	a) 293 m	b) 111 m	c) 91 m	d) 182 m
	0.774 HOTEL		(in second) the distance x	- Al
			ld the particle travel before	
	a) 24 m	b) 40 m	c) 56 m	d) 16 m
		North, then 20 m towards		n aa
	a) 22.5m	b) 25m	c) 25.5m	d) 30m
	15%	oody projected vertically up		D.O 1.1.
	a) Parabola	b) Ellipse	c) Hyperbola	d) Straight line
			s on time as $\sqrt{x} = t + 1$. Th	
		b) Decreases with time		d) None of these
			sses three points A, B and o	
	with velocities $\frac{\pi}{2}$, $\frac{\pi}{3}$ and $\frac{\pi}{4}$ r	espectively. The ratio of th	e separations between poir	nts A and B and between I
	and C i. e., $\frac{AB}{BC}$ is			
	a) 1	b) 2	, 10	20
	w) -	~) =	c) $\frac{10}{7}$	d) $\frac{20}{7}$
198.	A particle moving in a stra	ight line and passes throug	gh a point O with a velocity	of $6ms^{-1}$. The particle
	moves with a constant ret	ardation of $2ms^{-2}$ for 4 s a	and there after moves with	a constant velocity. How
	long after leaving O does t	he particle return to O		
	a) 3s	b) 8s	c) 6 m	d) 8 m
199.	A particle moves in a strai	ght line with a constant acc	celeration. It changes its ve	locity from $10 ms^{-1}$ to
	$20 ms^{-1}$ while passing thr	rough a distance 135 m in	t second. The value of t is	
	a) 12	b) 9	c) 10	d) 1.8
200.	A car starts from rest and	accelerates uniformly to a	speed of 180 kmh^{-1} in 10 s	seconds. The distance

covered by the car in this time interval is

a) 500 m	own vertically	b) 250 m	c) 100 m	d) $200 m$		
	201. A ball is thrown vertically upwards from the surface of earth with a speed of 18kmh^{-1} . If $g = 10 \text{ms}^{-2}$, then the maximum height attained by the ball is					
	im neight attai	AND DESCRIPTION OF THE PROPERTY OF THE PROPERT	c) 10 m	d) 180		
a) 1.25 m		b) 3 m	ALCOHOL:	d) 180 m		
	s freely from re			ast second. The value of h is		
a) 145 m		b) 100 m	c) 122.5 m	d) 200 m		
		(d) carefully and indicate v	which of these possibly rep	resents one dimensional		
motion of a	particle					
V		ν 1	Speed •	v↑		
. (7	,,				
a) ($\rightarrow t$	b) _	c) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	d) $\longrightarrow t$		
4		<i></i>	\vee			
204 Two trains	are moving wi	th equal speed in opposite	directions along two para	llel railway tracks. If the		
				he trains with respect to the		
	170 PR	then the speed of each trai		ne trains with respect to the		
a) 3 <i>u</i>		b) 2 <i>u</i>	c) 5u	d) 4 <i>u</i>		
	z-time relation		om rest is given by $v = kt$ v			
	versed in first					
a) 9 m		b) 16 m	c) 27 m	d) 36 m		
1,50	ement- time gr			ned at angles of 30° and 60°		
		tio of velocities of V_A : V_B is	. (55)	9		
a) 1:2		b) 1:√3	c) √3:1	d) 1:3		
	ws balls with t		pwards one after the other	r at an interval of two		
			hat more than two balls ar			
(Given $g =$				a		
a) At least (사용 (1987년 1일 전) 1일 전 1987년 1987년 1987년 1987년 1		b) Any speed less than 19	9.6 m/s		
	n speed 19.6 m	ı/s	d) More than 19.6			
	9.5.4	7.	. The ratio of distance trave	elled in each 2 sec during		
250	6 second of th					
a) 1 : 4 : 9		b) 1:2:4	c) 1:3:5	d) 1:2:3		
209. The wind a	pears to blow	from the north to a man r	noving in the north-east di	rection. When he doubles		
his velocity	the wind appe	ears to move in the direction	on $\cot^{-1}(2)$ east of north. T	he actual direction of the		
wind is						
a) $\sqrt{2}v$ toward	ards east	b) $\frac{v}{\sqrt{2}}$ towards west	c) $\sqrt{2} v$ towards west	d) $\frac{v}{\sqrt{2}}$ towards east		
		ving with same speed of 45				
			o Kilini – along Same un ecu	on. If a third car t, coming		
from the on	posite directio	10 BOS 특히 열어있었다면 BS CS CS CS CS (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	[2] [2] 사이보이 10 [1]	TSS 100 TS 하는 마음 마양이는 1번 점에 다시하는 100 TS		
		on with a speed of 36 kmh	[2] [2] 사이보이 10 [1]	erval of 5 min, the distance		
of separation		on with a speed of 36 kmh ⁻ 4 and <i>B</i> should be (in km)	⁻¹ meets two cars in an into	erval of 5 min, the distance		
of separation a) 6.75	n of two cars A	on with a speed of 36 kmh ⁻ 4 and <i>B</i> should be (in km) b) 7.25	⁻¹ meets two cars in an inte	erval of 5 min, the distance		
of separation a) 6.75 211. A balloon ri	on of two cars A	on with a speed of 36 kmh ⁻ 4 and <i>B</i> should be (in km) b) 7.25 with a constant acceleration	meets two cars in an interpolation $g/8$. A stone is released	erval of 5 min, the distance		
of separation a) 6.75 211. A balloon rinheight h. Th	on of two cars a ses from rest v se time taken b	on with a speed of 36 kmh ⁻ 4 and <i>B</i> should be (in km) b) 7.25 with a constant acceleration the stone to reach the gr	c) 5.55 on $g/8$. A stone is released to cound is	erval of 5 min, the distance d) 8.35 from it when it has risen to		
of separation a) 6.75 211. A balloon rinheight h. Th	on of two cars a ses from rest v se time taken b	on with a speed of 36 kmh ⁻ 4 and <i>B</i> should be (in km) b) 7.25 with a constant acceleration the stone to reach the gr	c) 5.55 on $g/8$. A stone is released to cound is	erval of 5 min, the distance d) 8.35 from it when it has risen to		
of separation a) 6.75 211. A balloon ring height h . The a) $4\sqrt{\frac{h}{g}}$	on of two cars A ses from rest v e time taken b	on with a speed of 36 kmh ⁻¹ A and B should be (in km) b) 7.25 with a constant acceleration by the stone to reach the graph b) $2\sqrt{\frac{h}{g}}$	c) 5.55 on $g/8$. A stone is released to cound is	erval of 5 min, the distance d) 8.35 from it when it has risen to d) $\sqrt{\frac{g}{h}}$		
of separation a) 6.75 211. A balloon ring height h . The a) $4\sqrt{\frac{h}{g}}$ 212. A man through	ses from rest vertime taken b	on with a speed of 36 kmh ⁻¹ and <i>B</i> should be (in km) b) 7.25 with a constant acceleration the stone to reach the graph b) $2\sqrt{\frac{h}{g}}$ cally upward and it rises the	c) 5.55 on $g/8$. A stone is released fround is c) $\sqrt{\frac{2h}{g}}$ arough 20 m and returns to	erval of 5 min, the distance d) 8.35 from it when it has risen to d) $\sqrt{\frac{g}{h}}$ to his hands. What was the		
of separation a) 6.75 211. A balloon rinheight h . The a) $4\sqrt{\frac{h}{g}}$ 212. A man through initial velocity	ses from rest vertice time taken be we a ball vertice tity (u) of the be	on with a speed of 36 kmh ⁻¹ A and B should be (in km) b) 7.25 with a constant acceleration by the stone to reach the graph b) $2\sqrt{\frac{h}{g}}$ cally upward and it rises the pall and for how much time	c) 5.55 on $g/8$. A stone is released to round is c) $\sqrt{\frac{2h}{g}}$ nrough 20 m and returns to $g(T)$ it remained in the air	erval of 5 min, the distance d) 8.35 from it when it has risen to d) $\sqrt{\frac{g}{h}}$ to his hands. What was the $[g=10m/s^2]$		
of separation a) 6.75 211. A balloon ring height h . The a) $4\sqrt{\frac{h}{g}}$ 212. A man through initial velocity $u=10m$	ses from rest vertice time taken be was a ball verticity (u) of the be \sqrt{s} , $T = 2s$	on with a speed of 36 kmh ⁻¹ A and B should be (in km) b) 7.25 with a constant acceleration by the stone to reach the graph b) $2\sqrt{\frac{h}{g}}$ cally upward and it rises the ball and for how much time b) $u = 10m/s$, $T = 4s$	c) 5.55 on $g/8$. A stone is released to round is c) $\sqrt{\frac{2h}{g}}$ or ough 20 m and returns to $g(T)$ it remained in the air $g(T)$ $g(T)$	erval of 5 min, the distance d) 8.35 from it when it has risen to d) $\sqrt{\frac{g}{h}}$ to his hands. What was the $[g = 10m/s^2]$ d) $u = 20m/s, T = 4s$		
of separation a) 6.75 211. A balloon ring height h . The a) $4\sqrt{\frac{h}{g}}$ 212. A man through initial velocity $u=10m$ 213. A train has	ses from rest vertice time taken be was a ball verticity (u) of the be \sqrt{s} , $T = 2s$	on with a speed of 36 kmh ⁻¹ A and B should be (in km) b) 7.25 with a constant acceleration by the stone to reach the graph b) $2\sqrt{\frac{h}{g}}$ cally upward and it rises the ball and for how much time b) $u = 10m/s$, $T = 4s$	c) 5.55 on $g/8$. A stone is released to round is c) $\sqrt{\frac{2h}{g}}$ or ough 20 m and returns to $g(T)$ it remained in the air $g(T)$ $g(T)$	erval of 5 min, the distance d) 8.35 from it when it has risen to d) $\sqrt{\frac{g}{h}}$ to his hands. What was the $[g=10m/s^2]$		
of separation a) 6.75 211. A balloon ring height h . The a) $4\sqrt{\frac{h}{g}}$ 212. A man through initial velocity $u=10m$	ses from rest vertice time taken be was a ball verticity (u) of the be \sqrt{s} , $T = 2s$	on with a speed of 36 kmh ⁻¹ A and B should be (in km) b) 7.25 with a constant acceleration by the stone to reach the graph b) $2\sqrt{\frac{h}{g}}$ cally upward and it rises the ball and for how much time b) $u = 10m/s$, $T = 4s$	c) 5.55 on $g/8$. A stone is released to round is c) $\sqrt{\frac{2h}{g}}$ or ough 20 m and returns to $g(T)$ it remained in the air $g(T)$ $g(T)$	erval of 5 min, the distance d) 8.35 from it when it has risen to d) $\sqrt{\frac{g}{h}}$ to his hands. What was the $[g = 10m/s^2]$ d) $u = 20m/s, T = 4s$		
of separation a) 6.75 211. A balloon ring height h . The a) $4\sqrt{\frac{h}{g}}$ 212. A man through initial velocity $u=10m$ 213. A train has	ses from rest vertice time taken be was a ball verticity (u) of the be \sqrt{s} , $T = 2s$	on with a speed of 36 kmh ⁻¹ A and B should be (in km) b) 7.25 with a constant acceleration by the stone to reach the graph b) $2\sqrt{\frac{h}{g}}$ cally upward and it rises the ball and for how much time b) $u = 10m/s$, $T = 4s$	c) 5.55 on $g/8$. A stone is released to round is c) $\sqrt{\frac{2h}{g}}$ or ough 20 m and returns to $g(T)$ it remained in the air $g(T)$ $g(T)$	erval of 5 min, the distance d) 8.35 from it when it has risen to d) $\sqrt{\frac{g}{h}}$ to his hands. What was the $[g = 10m/s^2]$ d) $u = 20m/s, T = 4s$		

CLICK HERE >>>

a) 50

- b) 53.33
- c) 48

- d) 70
- 214. A particle moves for 20 seconds with velocity 3 m/s and then velocity 4 m/s for another 20 seconds and finally moves with velocity 5 m/s for next 20 seconds. What is the average velocity of the particle
 - a) 3 m/s
- b) 4 m/s
- c) 5 m/s
- d) Zero
- 215. Velocity-time (v-t) graph for a moving object is shown in the figure. Total displacement of the object during the same interval when there is non-zero acceleration and retardation is

- a) 60 m
- b) 50 m
- c) 30 m
- d) 40 m
- 216. From a balloon rising vertically upwards at 5m/s a stone is thrown up at 10 m/s relative to the balloon. Its velocity with respect to ground after 2 s is (assume $g = 10m/s^2$)
 - a) 0

- b) $20 \, m/s$
- c) $10 \, m/s$
- d) 5 m/s
- 217. A particle moving in a straight line covers half the distance with speed of 3 m/s. The other half of the distance is covered in two equal time intervals with speed of 4.5 m/s and 7.5 m/s respectively. The average speed of the particle during the motion is
 - a) $4.0 \, m/s$
- b) 5.0 m/s
- c) $5.5 \, m/s$
- d) $4.8 \, m/s$
- 218. The path of a particle moving under the influence of a force fixed in magnitude and direction is
 - a) Straight line
- b) Circle
- c) Parabola
- d) Ellipse
- 219. If a car at rest accelerates uniformly to a speed of 144 km/h in 20 s. Then it covers a distance of
 - a) 20 m
- b) 400 m
- c) 1440m
- d) 2880 m

220. Which of the following graph represents uniform motion

- 221. An express train is moving with a velocity v_1 . Its driver finds another train is moving on the same track in the same direction with velocity v_2 . To escape collision, driver applies a retardation a on the train. The minimum time of escaping collision will be
 - a) $t = \frac{v_1 v_2}{a}$
- b) $t = \frac{v_1^2 v_2^2}{2}$
- c) None
- d) Both
- 222. A body moving with uniform acceleration, describes 40 m in the first 5 s and 65 m in next 5 s. its initial velocity will be
 - a) 4 ms^{-1}
- b) 2.5 ms^{-1}
- c) 3 ms^{-1}
- d) 11 ms^{-1}
- 223. A body falls freely from the top of a tower. It covers 36% of the total height in the last second before striking the ground level. The height of the tower is
 - a) 50 m
- b) 75 m
- c) 100m
- d) 125 m
- 224. A ball is dropped vertically downwards from a height d above the ground. It hits the ground and bounces up vertically to a height d/2. Neglecting subsequent motion and air resistance, its speed varies with the height h above the ground as

	225. A body thrown vertically up to reach its maximum height in t second. The total time from the time of				
	projection to reach a point at half of its maximum height while returning (in second) is				
	a) $\sqrt{2} t$	b) $\left(1+\frac{1}{\sqrt{2}}\right)t$	c) $\frac{3t}{}$	d) $\frac{t}{\sqrt{2}}$	
		\ \V2'	2	V 4	
		ring under the influence of			
	a) Straight line	b) Circle	c) Parabola	d) Ellipse	
		the rest has a velocity v' at		t'h'.	
		down for its velocity to bec		1) 0/	
	a) 2h	b) 4h	c) 6h	d) 8h	
		vith a constant acceleration	of 5 m/s^2 . Its instantaneo	us speed (in m/s) at the	
	end of 10 <i>sec</i> is a) 50	b) 5	c) 2	d) 0.5	
		y up from the ground. It rea	<i>.</i> ₹		
	1777 1	nd from the maximum heig	10.00	1 100m iii 5sec. Aitei wiiat	
	a) 1.2 sec	b) 5 sec	c) 10 sec	d) 25 sec	
		splacement x and t for a pa	The second secon	(a) 40 (a) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	
		B, BC and CD, the acceleration		inie is snown in figure.	
	y↑	o, be and cb, the accelerati	ion of the particle is		
	Displacement				
	olace				
	A B C				
	$0 \bigvee X$ Time $t \longrightarrow X$				
	OA, AB, BC, CD				
		b) - $0 + 0$	c) + 0 - +	d) - 0 - 0	
		ince with constant velocity			
		average velocity of the car i		o	
	a) 40	b) 45	c) 48	d) 50	
		described by the equation	u = at. The distance trave	elled by the particle in the	
	first 4 seconds	ža – ž			
	a) 4 <i>a</i>	b) 12a	c) 6a	d) 8a	
233.	A car, starting from rest, a	accelerates at the rate f thro	ough a distance S, then con	tinues at constant speed	
	for time t and then decele	rates at the rate $\frac{f}{2}$ to come t	to rest. If the total distance	traversed is 15 S, then	
	· · · · · · · · · · · · · · · · · · ·	2			
	$a) S = \frac{1}{2} f t^2$				
	b) c 1 c+2				
	b) $S = \frac{1}{4}ft^2$ c) $S = \frac{1}{72}ft^2$				
	c) $S = \frac{1}{-} ft^2$				
	72				
	$d) S = \frac{1}{6} f t^2$				
234	A particle located at $x = 0$	at time $t = 0$, starts movir	ng along the positive x-dire	ection with a velocity 'v'	
		ne displacement of the parti	77 (74)	colon Willia a volucity v	
	a) t	b) $t^{1/2}$	c) t^3	d) t^2	
	**************************************	STATE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN	100 M 100	and third second are in	
	ratio	under gravity. The distant	c covered by fem mise, seed	ond and time second are m	
	a) 1:3:5	b) 1:2:3	c) 1:4:9	d) 1:5:6	
		locity of $3\hat{i} + 4\hat{j}$ and an acc			
	a) 10 units	b) $7\sqrt{2}$ units	c) 7 units	d) 8.5 units	
	00.0 00 .000.000.000.000.000.0000.0000.	congression de l'impostration de la constantination de la constant	sunger (IRC - 60/9506935)	ourse introducer activities 125/2018	

237	. Two cars move in the sa	ame direction along pa	rallel roads. One of them i	s a 100 m long travelling with a
			he first car to overtake th	
	a) 24 s	b) 40 s	c) 60 s	d) 80 s
238	. A body is thrown vertic	ally upwards with a ve	clocity u . Find the true sta	tement from the following
	a) Both velocity and acc	celeration are zero at it	ts highest point	
	b) Velocity is maximum	and acceleration is ze	ro at the highest point	
	c) Velocity is maximum	$\mathfrak l$ and acceleration is $\mathfrak g$ $\mathfrak l$	downwards at its highest	point
	d) Velocity is zero at the	e highest point and ma	ximum height reached is	$u^2/2g$
239	. A particle moves along	a straight line such tha	t its displacement at any t	time t is given by $S = t^3 - 6t^2 + $
	3t + 4 metres			
	The velocity when the a			
	a) $3ms^{-1}$	b) $-12ms^{-1}$	c) $42ms^{-1}$	d) $-9ms^{-1}$
240	· A ball released from the	e top of a tower travels	$\frac{11}{36}$ of the height of the tov	ver in the last second of its journey.
	The height of the tower	is (Take $g = 10 = ms$	⁻²)	
	a) 11m	b) 36m	c) 47m	d) 180m
241	. A particle moves along	x —axis in such a way t	that its coordinate (x) var	ies with time t according to the
	expression $x = 2 - 5t$			
	a) 3 ms ⁻¹	b) 6 ms ⁻¹	c) -3 ms^{-1}	d) -5 ms^{-1}
242		(27)		ithin a distance of 20 m. if the car
	is going twice as fast, ie	$1.,120 \text{ kmh}^{-1}$, the stop		
	a) 20 m	b) 40 m	c) 60 m	d) 80 m
243	and the construction of the contract of the co			tre, reaches the edge P of the park,
				as shown in figure. If the round
	trip takes ten minutes,	the net displacement a	nd average speed of the c	yclist (in metre and kilometre per

hour) is

b)
$$\frac{\pi + 4}{2}$$
, 0

c) 21.4,
$$\frac{\pi + 4}{2}$$

244. A bird flies for 4 s with a velocity of |t-2|m/s in a straight line, where t is time in seconds. It covers a distance of

245. Acceleration velocity graph of a particle moving in a straight line is as shown in figure. The slope of velocity-displacement graph

a) Increases linearly

b) Decreases linearly

c) Is constant

d) Increases parabolically

246. A point initially at rest moves along x —axis. Its acceleration varies with time as $a = (6t + 5) \text{ms}^{-2}$. If it starts from origin, the distance covered in 2 s is

- a) 20 m
- b) 18 m
- c) 16 m
- d) 25 m

247. A particle starts from rest and travels a distance s with uniform acceleration, then it travels a distance 2s with uniform speed, finally it travels a distance 3s with uniform retardation and comes to rest. If the

complete motion of the particle in a straight line then the ratio of its average velocity to maximum velocity

- a) 6/7
- b) 4/5

c) 3/5

- d) 2/5
- 248. A ball falls from height h. After 1 second, another ball falls freely from a point 20 m below the point from where the first ball falls. Both of them reach the ground at the same time. What is the value of h
 - a) 11.2 m
- b) 21.2 m
- c) 31.2 m
- d) 41.2 m
- 249. A ball is thrown vertically upwards. Which of the following graph/graphs represent velocity-time graph of the ball during its flight (air resistance is neglected)

- a) A
- b) B
- c) C
- d) D
- 250. The particles A, B and C are thrown from the top of a tower with the same speed. A is thrown up, B is thrown down and C is horizontally. They hit the ground with speeds V_A , V_B and V_C respectively
 - a) $V_A = V_B = V_C$
- b) $V_A = V_B > V_C$
- c) $V_B > V_C > V_A$
- d) $V_A > V_B = V_C$
- 251. A body is moving with uniform acceleration describes 40 m in the first 5 sec and 65 m in next 5 sec. Its initial velocity will be
 - a) 4 m/s
- b) $2.5 \, m/s$
- c) $5.5 \, m/s$
- d) $11 \, m/s$
- 252. A body moves for a total of nine second starting from rest with uniform acceleration and then with uniform retardation, which is twice the value of acceleration and then stops. The duration of uniform acceleration
 - a) 3 s

- b) 4.5 s
- c) 5 s

- d) 6 s
- 253. A body travelling with uniform acceleration crosses two points A and B with velocities $20ms^{-1}$ and $d30 ms^{-1}$ respectively. The speed of the body at the mid-point of A and B is nearest to
 - a) $25.5 \, ms^{-1}$
- b) $25 ms^{-1}$
- c) $24ms^{-1}$
- d) $10\sqrt{6} \ ms^{-1}$
- 254. A body is at rest at x = 0. At t = 0, it starts moving in the positive x-direction with a constant acceleration. At the same instant another body passes through x = 0 moving in the positive x-direction with a constant speed. The position of the first body is given by $x_1(t)$ after time 't' and that of the second body by $x_2(t)$ after the same time interval. Which of the following graphs correctly describes $(x_1 - x_2)$ as a function of time 't'

255. The variation of velocity of a particle with time moving along a straight line is illustrated in the following figure. The distance travelled by the particle in four seconds is

a) 60 m

b) 55 m

c) 25 m

d) 30 m

256. A particle is moving with constant acceleration from A to B in a straight line AB. If u and v are the velocities at A and B respectively then its velocity at the midpoint C will be

a)
$$\left(\frac{u^2+v^2}{2u}\right)^2$$

257. The given graph shows the variation of velocity with displacement. Which one of the graph given below correctly represents the variation of acceleration with displacement

b) a

d) a

258. A body freely falling from rest has a velocity v after it falls through distance h. The distance it has to fall down further for its velocity to become double is

a) h

b) 2h

c) 3h

d) 4h

259. Speed of two identical cars u and 4u at a specific instant. The ratio of the respective distances in which the two cars are stopped from that instant is

a) 1:1

b) 1:4

c) 1:8

d) 1:16

260. A bus start from rest with an acceleration of $1~{\rm ms}^{-2}$. A man who is 48m behind the bus starts with a uniform velocity of $10ms^{-1}$. The minimum time after which the ma will catch the bus

- a) 4.8 s
- b) 8 s

- c) 10 s
- d) 12 s

261. A boat is sent across a river with a velocity of boat is 10 km/hr. If the resultant velocity of boat is 10 km/hr, then velocity of the river is:

- a) 10 km/hr
- b) 8 km/hr
- c) $6 \, km/hr$
- d) $4 \, km/hr$

262. An object, moving with a speed of 6.25 m/s, is decelerated at a rate given by $\frac{dv}{dt} = -2.5\sqrt{v}$ where v is the instantaneous speed. The time taken by the object, to come to rest, would be

a) 2 s

b) 4 s

c) 8 s

263. From the top of a tower of two stones, whose masses are in the ratio 1:2 are thrown on straight up with an initial speed u and the second straight down with the same speed u. Then neglecting air resistance

- a) The heavier stone hits the ground with a higher speed
- b) The lighter stone hits the ground with a higher speed
- c) Both the stones will have the same speed when they hit the ground
- d) The speed can't be determined with the given data

264. If a body starts from rest and travels 120 cm in the 6th second, then what is the acceleration

265. From the top of a	tower two stones, whose n	nasses are in the ratio 1:2 a	are thrown one straight up with a
initial speed u an	d the second straight down	with the same speed u . Th	en, neglecting air resistance
a) The heavier st	one hits the ground with a l	nigher speed	
b) The lighter sto	ne hits the ground with a h	igher speed	
c) Both the stone	s will have the same speed	when they hit the ground	
d) The speed can	t be determined with the g	ive data	
266. A body stars from	rest and falls vertically fro	om a height of 19.6m. If g =	9.8ms^{-2} , then the time taken by
the body to fall th	rough the last metre of its	fall, is	
a) 2.00 s	b) 0.05 s	c) 0.45 s	d) 1.95 s
267. If a car at rest acc	elerates uniformly to a spe	ed of $144 km/h$ in $20 s$. The	en it covers a distance of
a) 20 m	b) 400 m	c) 1440m	d) 2880 m

b) $0.027 \, m/s^2$

b) 4.9 m

268. A body released from a great height falls freely towards the earth. Another body is released from the same height exactly one second later. The separation between the two bodies two second after the release of the second body is

c) 24.5 m

c) $0.218m/s^2$

d) $0.03m/s^2$

d) 19.6 m

one straight up with an

269. The effective acceleration of a body, when thrown upwards with acceleration α will be: b) $\sqrt{a^2 + g^2}$ a) $\sqrt{a-g^2}$ c) (a-g)d) (a+g)

270. A boat crosses a river from port A to port B, which are just on the opposite side. The speed of the water is V_W and that of boat is V_B relative to still water. Assume $V_B = 2V_W$. What is the time taken by the boat, if It has to cross the river directly on the AB line

a)
$$\frac{2D}{V_B\sqrt{3}}$$
 b) $\frac{\sqrt{3}D}{2V_B}$ c) $\frac{D}{V_B\sqrt{2}}$ d) $\frac{D\sqrt{2}}{V_B}$

271. If a body is thrown up with the velocity of 15 m/s then maximum height attained by the body is (g = $10 \, m/s^2$

a) 11.25 m b) 16.2 m c) 24.5 m

272. A particle located at x = 0 at time t = 0, starts moving along the positive x-direction with a velocity 'v' that varies as $v = a\sqrt{x}$. The displacement of the particle varies with time as

b) $t^{1/2}$ c) t^3

273. Which of the following graphs can not possibly represent one dimensional motion of a particle

a) $0.20 \, m/s^2$

a) 9.8 m

a) I and II b) II and III c) II and IV d) All four

274. What determines the nature of the path followed by the particle

b) Velocity c) Acceleration d) Both (b) and (c)

275. A body falling for 2 seconds covers a distance S is equal to that covered in next second. Taking g = $10m/s^2, S =$

a) 30 m b) 10 m c) 60 m d) 20 m 276. A body falls from rest, its velocity at the end of first second is (g = 32ft/sec)

b) 32 ft/sec c) 64 ft/sec d) 24 ft/sec a) 16 ft/sec

277.	50 51 57		orresponding to height h w	77//
			city of projection is (g is acc	
	a) g $\sqrt{t_1t_2}$	$b)\frac{gt_1t_2}{t_1+t_2}$	c) $\frac{g\sqrt{t_1t_2}}{2}$	$d)\frac{g(t_1+t_2)}{2}$
278.	When a ball is thrown up	vertically with velocity V_0	, it reaches a maximum heig	ght of h' . If one wishes to
	triple the maximum heigh	nt then the ball should be th	rown with velocity	
	a) $\sqrt{3}V_0$	b) 3V ₀	c) 9V ₀	d) $3/2V_0$
279.	A particle moves along a բ	parabolic path $y = 9x^2$ in s	uch a way that the x -compo	onent of velocity remains
		$\frac{1}{3}$ ms ⁻¹ . The acceleration of	the particle is	
	a) $\frac{1}{3}$ jms ⁻²	b) 3ĵms ⁻²	c) $\frac{2}{3}$ jms ⁻²	d) 2ĵms ⁻²
280.	Which of the following gra	aphs can not possibly repre	esent one dimensional moti	on of a particle
	Position Covered Covered Position			
	Covered	1//		
	Time -	Time		
	Velocity Spec	II		
	Velocity	ed		
	Time	Time		
		IV		
	a) I and II	b) II and III	c) II and IV	d) All four
281.	사양하게 사망하는 방법 내용하다 하실	. [ly upwards, what is its resu	
	initial position			
	a) $10\sqrt{2m}$	b) 10 m	c) $\frac{10}{\sqrt{2}}m$	d) $10 \times 2m$
			٧Z	
282.			r $10s$ and then goes with cc	onstant speed for 30 s and
		² till it stops. What is the d	(20~ 10)(10 1) - 10 (10 10 10 10 10 10 10 10 10 10 10 10 10 1	124 ENERGY
	a) 750 m	b) 800 m	c) 700 m	d) 850 m
283.			down stream of a river. It o	
			cover the same distance in	
004	a) 6	b) 7.5	c) 10	d) 15
284.			cube of time elapsed. How	does the acceleration of the
	particle depends on time a) $a \propto t^2$	b) $a \propto 2t$	c) $a \propto t^3$	d) $a \propto t$
285		AND AND STREET CONTRACTOR	50 S	50 March 100 100 100 100 100 100 100 100 100 10
200			erated at a rate given by $\frac{dv}{dt}$:	= 2.5 \sqrt{v} where v is the
	로 가게 있는 것, 이번 경기가 가는 일을 하면 보이는 이번 시간에 있는 요리를 보고 있다. 그런 보고 있는 이번 보고 있는데 보고 있다. 	time taken by the object, to		D.O.
200	a) 1s	b) 2s	c) 4s	d) 8s
286.		round of a circular track of	f radius <i>R</i> in 40 sec. What w	vill be his displacement at
	the end of 2 min. 20 sec	b) 20	a) 2mD	d) 7=D
207	a) Zero	b) 2R	c) $2\pi R$ fradius R in 40 sec. What w	d) $7\pi R$
207.	the end of 2 min. 20 sec	Tourid of a circular track of	i radius k ili 40 sec. what v	viii be iiis dispiacement at
	a) Zero	b) 2R	c) 2πR	d) $7\pi R$
288.	A body moves from rest w	vith a constant acceleration	of 5 m/s^2 . Its instantaneous	us speed (in m/s) at the
	end of 10 sec is			
	a) 50	b) 5	c) 2	d) 0.5

289. A particle travels	310m in first $5sec$ and $10m$	n in next 3 sec. Assuming cor	stant acceleration what is the
distance travelle	d in next 2 sec		
a) 8.3 m	b) 9.3 m	c) 10.3 m	d) None of above
290. A juggler keeps o	on moving four balls in the a	air throws the balls in regula	r interval of time. When one ball
leaves his hand (speed= 20ms^{-1}), the positi	on of other ball will be (Take	$e g = 10 \text{ms}^{-2}$
a) 10m, 20m, 10			d) 5m, 10m, 20m
291. A ball is thrown	vertically upwards. Which o	of the following graph/graph	s represent velocity-time graph of
the ball during it	s flight (air resistance is ne	glected)	
·\	v.		
→t	→t		
53.70			
l (a)	(b)		
¥ /	× .		
\rightarrow t	→ t		
(c)	(d)		
a) A	b) B	c) C	d) D
292. A cricket ball is t	hrown up with a speed of 1	9.6 ms^{-1} . The maximum hei	ght it can reach is
a) 9.8 m	b) 19.6 m	c) 29.4 m	d) 39.2 m
293. A rocket is fired	upward from the earth's su	rface such that it creates an a	acceleration of 19.6 m/\sec^2 . If
after 5 sec its er	igine is switched off, the ma	aximum height of the rocket	from earth's surface would be
a) 245 m	b) 490 m	c) 980 m	d) 735 m
			st second of its motion equals the
	25	nds of its motion. The stone	
a) 6 s	b) 5 s	c) 7 s	d) 4 s
950	50.	t covers 36% of the total heig	ght in the last second before
사이 맛있다면 하네 그 아이를 하는 것이 하다 하다 하다.	nd level. The height of the t		3) 425
a) 50 m	b) 75 m	c) $100m$	d) 125 m
			he brakes can give a maximum ne place to the other place at a
distance of 1.2 kg		which a train can go from or	ie place to the other place at a
a) 108 s	b) 191 s	c) 56.6 s	d) Time is fixed
			e 3 m length of window some
and the second of the second o		ed does the ball pass the top	and the property of the state o
a) 6 ms ⁻¹	b) 12 ms ⁻¹	c) 7 ms ⁻¹	d) 3.5 ms ⁻¹
		s $10m$ in 5 seconds. The aver	- Table 1 - Tabl
of the particle is	Ö		
a) $2\pi \ ms^{-1}$	b) $4\pi ms^{-1}$	c) $2 ms^{-1}$	d) $4 ms^{-1}$
299. A body is thrown	ı vertically upwards. If air r	esistance is to be taken into	account, then the time during
which the body r	ises is		
a) Equal to the ti	me of fall	b) Less than the tir	ne of fall
c) Greater than t	he time of fall	d) Twice the time of	of fall
300. Figures (i) and (ii) below show the displace	ment-time graphs of two par	ticles moving along the x -axis. We
can say that			

- a) Both the particles are having a uniformly accelerated motion
- b) Both the particles are having a uniformly retarded motion
- c) Particle (i) is having a uniformly accelerated motion while particle (ii) is having a uniformly retarded motion
- d) Particle (i) is having a uniformly retarded motion while particle (ii) is having a uniformly accelerated
- 301. The position of a particle x (in metres) at a time t seconds is given by the relation $\vec{r} = (3t\hat{\imath} t^2\hat{\jmath} + 4\hat{k})$. Calculate the magnitude of velocity of the particle after 5 seconds
- b) 5.03
- d) 10.44
- 302. A wheel of radius 1 m rolls forward half a revolution on a horizontal ground. The magnitude of the displacement of the point of wheel initially in contact with the ground is
 - a) 2π

- b) $\sqrt{2}\pi$
- d) π
- 303. The position x of a particle with respect to time t along x-axis is given by $x = 9t^2 t^3$ where x is in metres and t in second. What will be the position of this particle when it achieves maximum speed along the +x direction
 - a) 32 m
- b) 54 m
- c) 81 m
- d) 24 m
- 304. If a ball is thrown vertically upwards with speed u, the distance covered during the last t seconds of its ascent is
 - a) $\frac{1}{2}gt^2$
- b) $ut \frac{1}{2}gt^2$
- c) (u gt)t
- d) ut
- 305. A body travels for 15 sec starting from rest with constant acceleration. If it travels distances S_1 , S_2 and S_3 in the first five seconds, second five secods and next five seconds respectively the relation between S_1, S_2 and S_3 is
- a) $S_1 = S_2 = S_3$ b) $5S_1 = 3S_2 = S_3$ c) $S_1 = \frac{1}{3}S_2 = \frac{1}{5}S_3$ d) $S_1 = \frac{1}{5}S^2 = \frac{1}{3}S_3$
- 306. The relation $3t = \sqrt{3x} + 6$ describes the displacement of a particle in one direction where x is in *metres* and t in sec. The displacement, when velocity is zero, is
 - a) 24 metres
- b) 12 metres
- c) 5 metres
- d) Zero

- 307. Free fall of an object (in vacuum) is a case of motion with
 - a) Uniform velocity
- b) Uniform acceleration c) Variable acceleration d) Constant momentum
- 308. A cyclist starts from the centre O of a circular park of radius one kilometre, reaches the edge P of the park, then cycles along the circumference and returns to the centre along QO as shown in figure. If the round trip takes ten minutes, the net displacement and average speed of the cyclist (in metre and kilometre per hour) is

a) 0, 1

- b) $\frac{\pi + 4}{2}$, 0
- c) 21.4, $\frac{\pi + 4}{2}$
- d) 0, 21.4
- 309. A particle moving in a straight line and passes through a point O with a velocity of $6ms^{-1}$. The particle moves with a constant retardation of $2ms^{-2}$ for 4 s and there after moves with a constant velocity. How long after leaving O does the particle return to O
 - a) 3s

b) 8s

c) 6 m

d) 8 m

- 310. The displacement x of a particle varies with time $t, x = ae^{-\alpha t} + be^{\beta t}$, where a, b, α and β are positive constants. The velocity of the particle will

 a) Go on decreasing with time

 b) Be independent of α and β c) Drop to zero when $\alpha = \beta$ d) Go on increasing with time

 311. Three different objects of masses m_1, m_2 and m_3 are allowed to fall from rest and from the same point 'O' along three different frictionless paths. The speeds of the three objects, on reaching the ground, will be in the ratio of

 a) $m_1: m_2: m_3$ b) $m_1: 2m_2: 3m_3$ c) 1: 1: 1

 d) $\frac{1}{m_1}: \frac{1}{m_2}: \frac{1}{m_3}$
- a) m_1 : m_2 : m_3 b) m_1 : $2m_2$: $3m_3$ c) 1: 1: 1 d) $\frac{1}{m_1}$: $\frac{1}{m_2}$: $\frac{1}{m_3}$ 312. The distance travelled by a particle is proportional to the square of time, then the particle travels with
- c) Increasing acceleration d) Decreasing velocity 313. A particle when thrown, moves such that it passes from same height at 2 and 10s, the height is a) g b) 2g c) 5g d) 10g
- 314. A body of mass m is resting on a wedge of angle θ as shown in figure. The wedge is given at acceleration α . What is the value of a son that the mass m just falls freely?

b) Uniform velocity

a) Uniform acceleration

- a) g b) g sin θ c) g tan θ d) g cot θ 315. An aeroplane is moving with horizontal velocity u at height h. The velocity of a packet dropped from it on the earth's surface will be (g is acceleration due to gravity)
 - a) $\sqrt{u^2 + 2gh}$ b) $\sqrt{2gh}$ c) 2gh d) $\sqrt{u^2 2gh}$
- 316. A small block sides without friction down an inclined plane starting from rest. Let S_n be the distance travelled from time t=n-1 to t=n. Then $\frac{S_n}{S_{n+1}}$ is
- a) $\frac{2n-1}{2n}$ b) $\frac{2n+1}{2n-1}$ c) $\frac{2n-1}{2n+1}$ d) $\frac{2n}{2n+1}$ 317. A body is moving according to the equation $x=at+bt^2-ct^3$ where x= displacement and a,b and c are
- constants. The acceleration of the body is

 a) a + 2bt b) 2b + 6ct c) 2b 6ct d) $3b 6ct^2$
- 318. A particle has an initial velocity of $3\hat{\imath} + 4\hat{\jmath}$ and an acceleration of $0.4\hat{\imath} + 0.3\hat{\jmath}$. Its speed after 10 s is
- a) 10 units b) $7\sqrt{2}$ units c) 7 units d) 8.5 units 319. From a balloon rising vertically upwards at 5m/s a stone is thrown up at $10 \ m/s$ relative to the balloon. Its
- velocity with respect to ground after 2 s is (assume $g = 10m/s^2$) a) 0 b) 20 m/s c) 10 m/s d) 5 m/s
- 320. Which of the following v-t graphs represents the motion of a ball falling freely from rest under gravity and rebounding from a metallic surface?

- 321. A particle moves along x –axis as $x = 4(t-2) + a(t-2)^2$ Which of the following is true? a) The initial velocity of particle is 4 b) The acceleration of particle is
 - a) The initial velocity of particle is 4 b) The acceleration of particle is 2a c) The particle is at origin at t=0 d) None of the above

322. A particle starts from th	e origin and moves a	long the X-axis such th	at the velocity at any instant is g	iven by
$4t^3 - 2t$, where t is in s	econd and velocity is	in ms^{-1} . What is the ac	cceleration of the particle when i	t is 2
m from the origin?				

a)
$$10 \text{ms}^{-2}$$

b)
$$12ms^{-2}$$

c)
$$22ms^{-2}$$

323. A boy begins to walk eastward along a street infront of his house and the graph of his displacement from home is shown in the following figure. His average speed for in the whole time interval is equal to

- b) 6 mmin⁻¹
- c) $\frac{8}{3}$ mmin⁻¹
- d) 2 mmin⁻¹

324. Which graph represents the uniform acceleration

- 325. The displacement x of a particle varies with time t, $x = ae^{-\alpha t} + be^{\beta t}$, where a, b, α and β are positive constants. The velocity of the particle will
 - a) Go on decreasing with time

b) Be independent of α and β

c) Drop to zero when $\alpha = \beta$

- d) Go on increasing with time
- 326. A point initially at rest moves along x-axis. Its acceleration varies with time as $a = (6t + 5)m/s^2$. If it starts from origin, the distance covered in 2 s is
 - a) 20 m
- b) 18 m
- c) 16 m
- d) 25 m
- 327. A body is projected up with a speed 'u' and the time taken by it is T to reach the maximum height H. Pick out the correct statement
 - a) It reaches H/2 in T/2 sec

b) It acquires velocity u/2 in T/2sec

c) Its velocity is u/2 at H/2

- d) Same velocity at 2T
- 328. A particle starts from rest and traverses a distance 2x with uniform acceleration, then moves uniformly over a further distance 4x and finally comes to rest after moving a further distance 6x under uniform retardation. Assuming entire motion to be rectilinear motion, the ratio of average speed over the journey to the maximum speed on its way is
 - a) 4/5

b) 3/5

c) 2/5

- d) 1/5
- 329. A body starts from rest. What is the ratio of the distance travelled by the body during the 4th and 3rd second
 - a) $\frac{7}{5}$

b) $\frac{5}{7}$

c) $\frac{7}{3}$

- d) $\frac{3}{7}$
- 330. The effective acceleration of a body, when thrown upwards with acceleration α will be:
 - a) $\sqrt{a-g^2}$
- b) $\sqrt{a^2 + g^2}$
- c) (a-g)
- d) (a+g)
- 331. Two balls A and B are thrown simultaneously from the top of a tower. A is thrown vertically up with a speed of $4 \, \mathrm{ms}^{-1}$. The ball A and B hit the ground with speed v_A and v_B respectively. Then,
 - a) $v_A < v_B$
- h) 12. > 12.
- c) $v_A \ge v_B$
- d) $v_A = v_B$

332 A hody is moving alo	ng a straight line nath y	with constant velocity. At an ins	stant of time the distance
	d its displacement is D,	20705	state of time the distance
a) D < S	b) $D > S$	c) $D = S$	d) $D \leq S$
		ally. If A starts with uniform vel	
		ation of $4m/s^2$, then B will cate	
a) 10 sec	b) 20 sec	c) 30 sec	d) 35 <i>sec</i>
		other ball falls freely from a po	
		the ground at the same time. V	
a) 11.2 m	b) 21.2 m	c) 31.2 m	d) 41.2 m
		cceleration $(0.3\hat{\imath} + 0.2\hat{\jmath})$. The n	
seconds will be		10.00	
a) $9\sqrt{2}$ units	b) $5\sqrt{2}$ units	c) 5 units	d) 9 units
		the action of a constant force. If	
		st 20 seconds is S_2 , then	
		c) $S_2 = 4S_1$	d) $S_2 = S_1$
337. Four marbles are dro	opped from the top of a	tower one after the other with	an interval of one second. The
first one reaches the	ground 4 seconds. Whe	en the first one reaches the grou	and the distances between the
first and second, the	second and third and th	ne third and forth will be respe	ctively
a) 35,25 and 15 m			
b) 30,20 and 10 m			
c) 20,10 and 5 m			
d) 40,30 and 20 m			
338. The ratio of the num	erical values of the aver	rage velocity and average speed	d of a body is always
a) Unity	b) Unity or less	c) Unity or more	d) Less than unity
a) Unity 339. The acceleration due	b) Unity or less to gravity on the plane	c) Unity or more at A is 9 times the acceleration A	d) Less than unity due to gravity on the planet B . A
a) Unity 339. The acceleration due man jumps to a heigh	b) Unity or less to gravity on the plane	c) Unity or more	d) Less than unity due to gravity on the planet B . A
a) Unity 339. The acceleration due	b) Unity or less to gravity on the plane	c) Unity or more et A is 9 times the acceleration of A. What is the height of jump	d) Less than unity due to gravity on the planet <i>B</i> . A by the same person on the
a) Unity 339. The acceleration due man jumps to a heigl planet <i>B</i>	b) Unity or less to gravity on the plane ht of 2m on the surface	c) Unity or more et A is 9 times the acceleration of A. What is the height of jump	d) Less than unity due to gravity on the planet <i>B</i> . A by the same person on the
 a) Unity 339. The acceleration due man jumps to a height planet B a) 18 m 	b) Unity or less to gravity on the plane ht of 2m on the surface b) 6 m	c) Unity or more at A is 9 times the acceleration of A. What is the height of jump c) $\frac{2}{3}m$	d) Less than unity due to gravity on the planet B . A by the same person on the $d) \frac{2}{9} m$
 a) Unity 339. The acceleration due man jumps to a height planet B a) 18 m 340. The acceleration a or 	b) Unity or less to gravity on the plane at of 2m on the surface b) 6 m	c) Unity or more et A is 9 times the acceleration of A. What is the height of jump $c) \frac{2}{3} m$ In rest varies with time according	d) Less than unity due to gravity on the planet B . A by the same person on the $d) \frac{2}{9} m$
 a) Unity 339. The acceleration due man jumps to a height planet B a) 18 m 340. The acceleration a of velocity of the partice 	b) Unity or less to gravity on the plane at of 2m on the surface b) 6 m f a particle starting from le after a time t will be	c) Unity or more et A is 9 times the acceleration of A. What is the height of jump $c) \frac{2}{3} m$ In rest varies with time according	d) Less than unity due to gravity on the planet B . A by the same person on the $d) \frac{2}{9} m$ ag to relation $a = \alpha t + \beta$. The
 a) Unity 339. The acceleration due man jumps to a height planet B a) 18 m 340. The acceleration a of velocity of the partice 	b) Unity or less to gravity on the plane at of 2m on the surface b) 6 m f a particle starting from le after a time t will be	c) Unity or more et A is 9 times the acceleration of A. What is the height of jump $c) \frac{2}{3} m$ In rest varies with time according	d) Less than unity due to gravity on the planet B . A by the same person on the $d) \frac{2}{9} m$
a) Unity 339. The acceleration due man jumps to a heigh planet B a) $18 m$ 340. The acceleration a of velocity of the partic a) $\frac{\alpha t^2}{2} + \beta$	b) Unity or less to gravity on the plane at of $2m$ on the surface b) $6m$ f a particle starting from le after a time t will be b) $\frac{\alpha t^2}{2} + \beta t$	c) Unity or more et A is 9 times the acceleration of a . What is the height of jump $c) \frac{2}{3}m$ or rest varies with time according $c) \alpha t^2 + \frac{1}{2}\beta t$	d) Less than unity due to gravity on the planet B . A by the same person on the $d) \frac{2}{9}m$ ag to relation $a = \alpha t + \beta$. The $d) \frac{(\alpha t^2 + \beta t)}{2}$
a) Unity 339. The acceleration due man jumps to a heigh planet B a) $18 m$ 340. The acceleration a of velocity of the partic a) $\frac{\alpha t^2}{2} + \beta$ 341. A 150 m long train is	b) Unity or less to gravity on the plane at of $2m$ on the surface b) $6m$ f a particle starting from le after a time t will be b) $\frac{\alpha t^2}{2} + \beta t$ s moving with a uniform	c) Unity or more et A is 9 times the acceleration of A. What is the height of jump $c) \frac{2}{3} m$ In rest varies with time according	d) Less than unity due to gravity on the planet B . A by the same person on the $d) \frac{2}{9}m$ ag to relation $a = \alpha t + \beta$. The $d) \frac{(\alpha t^2 + \beta t)}{2}$
a) Unity 339. The acceleration due man jumps to a heigh planet B a) $18 m$ 340. The acceleration a of velocity of the partic a) $\frac{\alpha t^2}{2} + \beta$ 341. A 150 m long train is bridge of length 850	b) Unity or less to gravity on the plane at of $2m$ on the surface b) $6m$ f a particle starting from le after a time t will be b) $\frac{\alpha t^2}{2} + \beta t$ s moving with a uniform m is	c) Unity or more et A is 9 times the acceleration of a . What is the height of jump $c) \frac{2}{3}m$ In rest varies with time according $c) \alpha t^2 + \frac{1}{2}\beta t$ In velocity of $45 \ km/h$. The time	d) Less than unity due to gravity on the planet B . A by the same person on the $d) \frac{2}{9}m$ ag to relation $a = \alpha t + \beta$. The $d) \frac{(\alpha t^2 + \beta t)}{2}$ taken by the train to cross a
a) Unity 339. The acceleration due man jumps to a heigh planet B a) $18 m$ 340. The acceleration a of velocity of the partic a) $\frac{\alpha t^2}{2} + \beta$ 341. A 150 m long train is bridge of length 850 a) $56 sec$	b) Unity or less to gravity on the plane at of $2m$ on the surface b) $6m$ f a particle starting from le after a time t will be b) $\frac{\alpha t^2}{2} + \beta t$ s moving with a uniform m is b) $68 \sec$	c) Unity or more et A is 9 times the acceleration of a . What is the height of jump $c) \frac{2}{3}m$ or rest varies with time according $c) \alpha t^2 + \frac{1}{2}\beta t$ or velocity of $45 \ km/h$. The time $c) \ 80 \ sec$	d) Less than unity due to gravity on the planet B . A by the same person on the $d) \frac{2}{9}m$ ag to relation $a = \alpha t + \beta$. The $d) \frac{(\alpha t^2 + \beta t)}{2}$
a) Unity 339. The acceleration due man jumps to a heigh planet B a) $18 m$ 340. The acceleration a of velocity of the partic a) $\frac{\alpha t^2}{2} + \beta$ 341. A 150 m long train is bridge of length 850 a) $56 sec$ 342. Acceleration of a box	b) Unity or less to gravity on the plane at of $2m$ on the surface b) $6m$ f a particle starting from le after a time t will be b) $\frac{\alpha t^2}{2} + \beta t$ s moving with a uniform m is b) $68 \ sec$ dy when displacement e	c) Unity or more et A is 9 times the acceleration of a . What is the height of jump $c) \frac{2}{3}m$ or rest varies with time according $c) \alpha t^2 + \frac{1}{2}\beta t$ or velocity of $45 \ km/h$. The time $c) \ 80 \ sec$ equation is $3s = 9t + 5t^2$ is	d) Less than unity due to gravity on the planet B . A by the same person on the $\frac{2}{9}m$ ag to relation $a=\alpha t+\beta$. The $\frac{(\alpha t^2+\beta t)}{2}$ taken by the train to cross a $\frac{1}{9} \cos \theta = \frac{1}{2} \cos \theta$
a) Unity 339. The acceleration due man jumps to a heigh planet B a) $18 m$ 340. The acceleration a of velocity of the partic a) $\frac{\alpha t^2}{2} + \beta$ 341. A 150 m long train is bridge of length 850 a) $56 sec$ 342. Acceleration of a box a) $5/3$	b) Unity or less to gravity on the plane at of $2m$ on the surface b) $6m$ f a particle starting from the after a time t will be b) $\frac{\alpha t^2}{2} + \beta t$ smoving with a uniform m is b) $68 \ sec$ by when displacement e b) $14/3$	c) Unity or more et A is 9 times the acceleration of a . What is the height of jump a a b a	d) Less than unity due to gravity on the planet B . A p by the same person on the $\frac{2}{9}m$ ag to relation $a=\alpha t+\beta$. The $\frac{(\alpha t^2+\beta t)}{2}$ taken by the train to cross a $\frac{1}{92} \sec \frac{1}{9}$
a) Unity 339. The acceleration due man jumps to a heigh planet B a) $18 m$ 340. The acceleration a of velocity of the partic a) $\frac{\alpha t^2}{2} + \beta$ 341. A 150 m long train is bridge of length 850 a) $56 sec$ 342. Acceleration of a boo a) $5/3$ 343. A point initially at re	b) Unity or less to gravity on the plane at the form on the surface b) $6m$ for a particle starting from the after a time t will be b) $\frac{\alpha t^2}{2} + \beta t$ a moving with a uniform t is b) $68 \ sec$ by when displacement e b) $14/3$ st moves along t -axis. I	c) Unity or more at A is 9 times the acceleration of A . What is the height of jump $c) \frac{2}{3}m$ or rest varies with time according $c) \alpha t^2 + \frac{1}{2}\beta t$ or velocity of $45 \ km/h$. The time $c) \ 80 \ sec$ equation is $3s = 9t + 5t^2$ is $c) \ 10/3$ its acceleration varies with times	d) Less than unity due to gravity on the planet B . A p by the same person on the $\frac{2}{9}m$ ag to relation $a=\alpha t+\beta$. The $\frac{(\alpha t^2+\beta t)}{2}$ taken by the train to cross a $\frac{1}{92} \sec \frac{1}{9}$
a) Unity 339. The acceleration due man jumps to a heigh planet B a) $18 m$ 340. The acceleration a of velocity of the partic a) $\frac{\alpha t^2}{2} + \beta$ 341. A 150 m long train is bridge of length 850 a) $56 sec$ 342. Acceleration of a boo a) $5/3$ 343. A point initially at re starts from origin, the	b) Unity or less to gravity on the plane at to $2m$ on the surface b) $6m$ f a particle starting from le after a time t will be b) $\frac{\alpha t^2}{2} + \beta t$ s moving with a uniform m is b) $68 \ sec$ dy when displacement e b) $14/3$ st moves along x -axis. It is distance covered in 2	c) Unity or more at A is 9 times the acceleration of A . What is the height of jump c , $\frac{2}{3}m$ an rest varies with time according c , $\alpha t^2 + \frac{1}{2}\beta t$ at velocity of $45 \ km/h$. The time c , $80 \ sec$ equation is $3s = 9t + 5t^2$ is c , $10/3$ its acceleration varies with time s is	d) Less than unity due to gravity on the planet B . A p by the same person on the $\frac{2}{9}m$ and to relation $a = \alpha t + \beta$. The $\frac{(\alpha t^2 + \beta t)}{2}$ taken by the train to cross a $\frac{1}{92} \sec \alpha$ d) 19/3 at $a = (6t + 5)m/s^2$. If it
a) Unity 339. The acceleration due man jumps to a heigh planet B a) $18 m$ 340. The acceleration a of velocity of the partic a) $\frac{\alpha t^2}{2} + \beta$ 341. A 150 m long train is bridge of length 850 a) $56 sec$ 342. Acceleration of a box a) $5/3$ 343. A point initially at re starts from origin, the a) $20 m$	b) Unity or less to gravity on the plane at of $2m$ on the surface b) $6m$ f a particle starting from le after a time t will be b) $\frac{\alpha t^2}{2} + \beta t$ s moving with a uniform m is b) $68 \ sec$ dy when displacement e b) $14/3$ st moves along x -axis. It distance covered in 2 b) $18 \ m$	c) Unity or more at A is 9 times the acceleration of A . What is the height of jump c , $\frac{2}{3}m$ an rest varies with time according c , $at^2 + \frac{1}{2}\beta t$ at velocity of $45 \ km/h$. The time c , $80 \ sec$ equation is $3s = 9t + 5t^2$ is c , $10/3$ at acceleration varies with time s is c ,	d) Less than unity due to gravity on the planet B . A p by the same person on the $\frac{2}{9}m$ and to relation $a = \alpha t + \beta$. The $\frac{(\alpha t^2 + \beta t)}{2}$ taken by the train to cross a $\frac{d}{3} = \frac{2}{3} = 2$
a) Unity 339. The acceleration due man jumps to a heigh planet B a) $18 m$ 340. The acceleration a of velocity of the partic a) $\frac{\alpha t^2}{2} + \beta$ 341. A 150 m long train is bridge of length 850 a) $56 sec$ 342. Acceleration of a box a) $5/3$ 343. A point initially at re starts from origin, th a) $20 m$ 344. The displacement-times	b) Unity or less to gravity on the plane at of $2m$ on the surface b) $6m$ f a particle starting from le after a time t will be b) $\frac{\alpha t^2}{2} + \beta t$ s moving with a uniform m is b) $68 \ sec$ dy when displacement e b) $14/3$ st moves along x -axis. In the distance covered in 2 b) $18 \ m$ me graph of a moving of	c) Unity or more at A is 9 times the acceleration of A . What is the height of jump c , $\frac{2}{3}m$ in rest varies with time according c , $\alpha t^2 + \frac{1}{2}\beta t$ in velocity of $45 \ km/h$. The time c , $80 \ sec$ equation is $3s = 9t + 5t^2$ is c , $10/3$ its acceleration varies with time s is s is s is s in the s in the s is s in the s in the s in the s is s in the	d) Less than unity due to gravity on the planet B . A p by the same person on the $\frac{2}{9}m$ and to relation $a = \alpha t + \beta$. The $\frac{(\alpha t^2 + \beta t)}{2}$ taken by the train to cross a $\frac{d}{3} = \frac{2}{3} = 2$
a) Unity 339. The acceleration due man jumps to a heigh planet B a) $18 m$ 340. The acceleration a of velocity of the partic a) $\frac{\alpha t^2}{2} + \beta$ 341. A 150 m long train is bridge of length 850 a) $56 sec$ 342. Acceleration of a box a) $5/3$ 343. A point initially at re starts from origin, th a) $20 m$ 344. The displacement-times	b) Unity or less to gravity on the plane at of $2m$ on the surface b) $6m$ f a particle starting from le after a time t will be b) $\frac{\alpha t^2}{2} + \beta t$ s moving with a uniform m is b) $68 \ sec$ dy when displacement e b) $14/3$ st moves along x -axis. It distance covered in 2 b) $18 \ m$	c) Unity or more at A is 9 times the acceleration of A . What is the height of jump c , $\frac{2}{3}m$ in rest varies with time according c , $\alpha t^2 + \frac{1}{2}\beta t$ in velocity of $45 \ km/h$. The time c , $80 \ sec$ equation is $3s = 9t + 5t^2$ is c , $10/3$ its acceleration varies with time s is s is s is s in the s in the s is s in the s in the s in the s is s in the	d) Less than unity due to gravity on the planet B . A p by the same person on the $\frac{2}{9}m$ and to relation $a = \alpha t + \beta$. The $\frac{(\alpha t^2 + \beta t)}{2}$ taken by the train to cross a $\frac{d}{3} = \frac{2}{3} = 2$

8 10

345. Two boys are standing at the ends A and B of a ground where AB = a. The boy at B starts running in a direction perpendicular to AB with velocity v_1 . The boy at A starts running simultaneously with velocity v_2 and catches the other boy in a time t, where t is

a)
$$a/\sqrt{v^2+v_1^2}$$

b)
$$\sqrt{a^2/(v^2-v_1^2)}$$

c)
$$a/(v-v_1)$$

d)
$$a/(v + v_1)$$

- 346. For a moving body at any instant of time
 - a) If the body is not moving, the acceleration is necessarily zero
 - b) If the body is slowing, the retardation is negative
 - c) If the body is slowing, the distance is negative
 - d) If displacement, velocity and acceleration at that instant are known, we can find the displacement at any given time in future
- 347. A steam boat goes across a lake and comes back (i) on a quiet day when the water is still and (ii) on a rough day when there is a uniform current so as to help the journey onwards and to impede the journey back. If the speed of the launch on both days was same, the time required for complete journey on the rough day, as compared to the quiet day will be
- b) Less
- c) Same
- d) None of these
- 348. A car moving with a velocity of 10 m/s can be stopped by the application of a constant force F in a distance of 20 m. If the velocity of the car is 30 m/s. It can be stopped by this force in
- b) 20 m
- c) 60 m
- 349. A body moves for a total of nine second started from rest with uniform acceleration and then with uniform retardation, which is twice the value of acceleration and then stops. The duration of uniform acceleration

- b) 4.5 s
- c) 5 s

- 350. A body is released from the top of a tower of height h metre. It takes T second to reach the ground. Where is the ball at the time $\frac{T}{2}$ second?

b) At $\frac{h}{2}$ metre from the ground

a) At $\frac{h}{4}$ metre from the ground c) At $\frac{3h}{4}$ metre from the ground

- d) Depends upon the mass and volume of the ball
- 351. A particle crossing the origin of co-ordinates at time t = 0, moves in the xy -plane with a constant acceleration a in the y – direction. If its equation of motion is $y = bx^2$ (b is a constant), its velocity component in the x -direction is
- b) $\sqrt{\frac{a}{2h}}$
- c) $\sqrt{\frac{a}{b}}$
- 352. A body falls from a height h = 200m (at New Delhi). The ratio of distance travelled in each 2 sec during t = 0 to t = 6 second of the journey is
 - a) 1:4:9
- b) 1:2:4
- c) 1:3:5
- d) 1:2:3
- 353. An object is moving with a uniform acceleration which is parallel to its instantaneous direction of motion. The displacement (s) –velocity (v)graph of this object is

354. Velocity-time (v-t) graph for a moving object is shown in the figure. Total displacement of the object during the time interval when there is non-zero acceleration and retardation is

- a) 60 m
- b) 50 m
- c) 30 m
- d) 40 m
- 355. A balloon is at a height of 81 m and is ascending upwards with a velocity of 12 m/s. A body of 2kg weight is dropped from it. If $g = 10 \ m/s^2$, the body will reach the surface of earth in
 - a) 1.5 s
- b) 4.025 s
- c) 5.4 s
- d) 6.75 s
- 356. A balloon is at a height of $81\ m$ and is ascending upwards with a velocity of $12\ m/s$. A body of 2kg weight is dropped from it. If $g=10\ m/s^2$, the body will reach the surface of earth in
 - a) 1.5 *s*
- b) 4.025 s
- c) 5.4 s
- d) 6.75 s
- 357. The position of a particle x (in metre) at a time t second is given by the relation $r = (3t\hat{\mathbf{i}} t^2\hat{\mathbf{j}} + 4\hat{\mathbf{k}})$. Calculate the magnitude of velocity of the particle after 5 s.
 - a) 3.55 m/s
- b) 5.03 m/s
- c) 8.75 m/s
- d) 10.44 m/s
- 358. A metro train starts from rest and in five seconds achieves 108 kmh⁻¹. After that it moves with constant velocity and comes to rest after travelling 45 m with uniform retardation. If total distance travelled is 395 m, find total time of travelling
 - a) 12.2 s
- b) 15.3 s
- c) 9 s

- d) 17.2 s
- 359. A particle moves a distance x in time t according to equation $x = (t + 5)^{-1}$. The acceleration of particle is proportional to
 - a) (Velocity)^{2/3}
- b) (Velocity)^{3/2}
- c) (distance)²
- d) (distance)⁻²

- 360. The displacement of a particle starting from rest (at t=0) is given by $s=6t^2-t^3$. The time in seconds at which the particle will attain zero velocity again, is
 - a) 2

b) 4

c) 6

- d) 8
- 361. In the following graph, distance travelled by the body in metres is

a) 200

b) 250

c) 300

- d) 400
- 362. A car is travelling at 72 kmh^{-1} and is 20 m from a barrier when the driver puts on the brakes. The car hits the barrier 2s later. What is the magnitude of the constant deceleration?
 - a) 7.2 ms^{-2}
- b) 10 ms^{-2}
- c) 36 ms^{-2}
- d) 15 ms^{-2}
- 363. A particle is moving with constant initial velocity 4 ms⁻¹ till t = 1.5 s. Then it accelerates at 10 ms⁻² till t = 3. The distance covered is (Take $g = 10 \text{ms}^{-2}$)
 - a) 17.25 m
- b) 36.25 m
- c) 40 m
- d) 23.25 m

364. An object dropped from rest. Its v - t graph is

- 365. A ball A is thrown up vertically with a speed u and at the same instant another ball B is released from a height h. At time t, the speed of A relative to B is
 - a) u

b) 2u

- c) u gt
- d) $\sqrt{(u^2-gt)}$
- 366. The position x of a particle with respect to time t along x-axis is given by $x = 9t^2 t^3$ where x is in metres and t in second. What will be the position of this particle when it achieves maximum speed along the +x direction
 - a) 32 m
- b) 54 m
- c) 81 m
- d) 24 m

- 367. Select the incorrect statements from the following
 - S1: Average velocity is path length divided by time interval
 - S2: In general, speed is greater than the magnitude of the velocity
 - S3: A particle moving in a given direction with a non-zero velocity can have zero speed
 - S4: The magnitude of average velocity is the average speed
 - a) S2 and S3
- b) S1 and S4
- c) S1, S3 and S4
- d) All four statements
- 368. Which of the following velocity-time graphs represent uniform motion

- 369. A particle moving with a uniform acceleration travels 24 m and 64 m in the first two consecutive interval of 4 s each. Its initial velocity will be
 - a) 5 ms^{-1}
- b) 3 ms^{-1}
- c) 1 ms^{-1}
- d) 4 ms^{-1}

(half of its total distance with	. B. IBO	alf distance with speed v_2 . Its
a) $\frac{v_1^2 v_2^2}{v_1^2 + v_2^2}$	b) $\frac{v_1 + v_2}{2}$	c) $\frac{v_1 v_2}{v_1 + v_2}$	d) $\frac{2v_1v_2}{v_1+v_2}$
371. The distance trave	elled by a particle starting f	rom rest and moving with	an acceleration $\frac{4}{3}ms^{-2}$, in the
second is a) $\frac{10}{3}$ m	b) $\frac{19}{3}m$	c) 6 m	d) 4 m

372. A particle moves in a straight line so that its displacement x metre at time t second is given by $t=\sqrt{x^2-1}$

Its acceleration in ms^{-2} at time t second is

a)
$$\frac{1}{x^3}$$

b)
$$\frac{t^2}{x^3}$$

c)
$$\frac{1}{x} - \frac{t^2}{x^3}$$

d)
$$\frac{t^2}{x^3} - \frac{1}{x^2}$$

third

373. A particle moves in a straight line with a constant acceleration. It changes its velocity from 10 ms⁻¹to $20 ms^{-1}$ while passing through a distance 135 m in t second. The value of t is

374. A body is at rest at x = 0. At t = 0, it starts moving in the positive x-direction with a constant acceleration. At the same instant another body passes through x = 0 moving in the positive x-direction with a constant speed. The position of the first body is given by $x_1(t)$ after time 't' and that of the second body by $x_2(t)$ after the same time interval. Which of the following graphs correctly describes $(x_1 - x_2)$ as a function of time 't'

375. Two cars A and B are moving with same speed of 45 km/hr along same direction. If a third car C coming from the opposite direction with a speed of 36 km/hr meets two cars in an interval of 5 minutes, the distance of separation of two cars A and B should be (in km)

376. A body A moves with a uniform acceleration a and zero initial velocity. Another body B, starts from the same point moves in the same direction with a constant velocity v. The two bodies meet after a time t. The value of t is

a)
$$\frac{2v}{a}$$

b)
$$\frac{v}{a}$$

c)
$$\frac{v}{2a}$$

d)
$$\sqrt{\frac{v}{2a}}$$

377. Consider the acceleration, velocity and displacement of a tennis ball as it falls to the ground and bounces back. Directions of which of these changes in the process

a) Velocity only

b) Displacement and velocity

c) Acceleration, velocity and displacement

d) Displacement and acceleration

378. Starting from rest, acceleration of a particle is a = 2(t-1). The velocity of the particle at t = 5s is

a) 15 m/sec

b) 25 m/sec

c) 5 m/sec

d) None of these

379. A ball P is dropped vertically and another ball Q is thrown horizontally with the same velocities from the same height and at the same time. If air resistance is neglected, then

a) Ball P reaches the ground first

b) Ball Q reaches the ground first

c) Both reach the ground at the same time

d) The respective masses of the two balls will decide the time

380. Two identical metal spheres are released from the top of a tower after t seconds of each other such that they fall along the same vertical line. If air resistance is neglected, then at any instant of time during their fall

- a) The difference in their displacements remains the same
- b) The difference between their speeds remains the same
- c) The difference between their heights above ground is proportional to t^2
- d) The difference between their displacements is proportional to t
- 381. A particle starts from rest at t = 0 and undergoes an acceleration a in ms^{-2} with time t in second which is as shown

Which one of the following plot represents velocity v in ms^{-1} *versus* time t in second?

a)

c)

- 382. A body is thrown vertically upwards with velocity u. The distance travelled by it in the fifth and the sixth seconds are equal. The velocity u is given by $(g = 9.8 \text{ m/s}^2)$
 - a) $24.5 \, m/s$
- b) $49.0 \, m/s$
- c) $73.5 \, m/s$
- d) 98.0 m/s

383. Which of the following graph represents uniform motion

- 384. A train of 150 m length is going towards north direction at a speed of 10m/sec. A parrot flies at the speed of 5 m/sec towards south direction parallel to the railway track. The time taken by the parrot to cross the train is
 - a) 12 sec
- b) 8 sec
- c) 15 sec
- d) 10 sec
- 385. A body is thrown vertically upwards with velocity u. The distance travelled by it in the fifth and the sixth seconds are equal. The velocity u is given by $(g = 9.8 \text{ m/s}^2)$
 - a) $24.5 \, m/s$
- b) $49.0 \, m/s$
- c) $73.5 \, m/s$
- d) 98.0 m/s
- 386. A ball is dropped from a high rise platform at t = 0 starting from rest. After 6 seconds another ball is thrown downwards from the same platform with a speed v. The two balls meet at t = 18s. What is the value of v? (taking $g = 10 m/s^2$)
 - a) $60 \, m/s$
- b) $75 \, m/s$
- c) 55 m/s
- d) $40 \, m/s$
- 387. Two stones of equal masses are dropped from a rooftop of height h one after another. Their separation distance against time will
 - a) Remain the same
- b) Increase
- c) Decrease
- d) Be zero

388. A juggler throws	balls into air. He throws o	ne whenever the previous	one is at its highest point. If the
throws n balls ea	ach second, the height to w	hich each ball will rise is	
a) $\frac{g}{2n^2}$	b) $\frac{2g}{n^2}$	c) $\frac{2g}{n}$	d) $\frac{g}{4n^2}$
389. For the velocity-	time graph shown in figur	e below the distance cover	ed by the body in last two seconds of
its motion is wh	at fraction of the total dista	ance covered by it in all the	seven seconds
<u>†</u> 10 –			

390. Two boys are standing at the ends A and B of a ground where AB = a. The boy at B starts running in a direction perpendicular to AB with velocity v_1 . The boy at A starts running simultaneously with velocity v_2 and catches the other boy in a time t, where t is

a)
$$a/\sqrt{v^2+v_1^2}$$

b) $\sqrt{a^2/(v^2-v_1^2)}$

c) $a/(v-v_1)$

d) $a/(v + v_1)$

391. A body is projected with a velocity v and after some time it returns to the point from which it was projected. The average velocity and average speed of the body for the total time of flight are

a) $\vec{v}/2$ and v/2

b) 0 and v/2

c) 0 and 0

d) $\vec{v}/2$ and 0

392. The x - t graph shown in the figure represents

a) Constant velocity

b) Velocity of the body is continuously changing

c) Instantaneous velocity

d) The body travels with constant speed upto time t_1 and then stops

393. A body starts from rest, with uniform acceleration a. The acceleration of a body as function of time t is given by the equation a = pt where p is constant, then the displacement of the particle in the time interval t = 0 to $t = t_1$ will be

a)
$$\frac{1}{2}pt_1^3$$

b) $\frac{1}{3}pt_1^2$

c) $\frac{1}{4}pt_1^2$

d) $\frac{1}{6}pt_1^3$

394. Velocity-time curve for a body projected vertically upwards is

a) Parabola

b) Ellipse

c) Hyperbola

d) Straight line

395. For a body moving with relativistic speed, if the velocity is doubled, then

a) Its linear momentum is doubled

b) Its linear momentum will be less than double

c) Its linear momentum will be more than double

d) Its linear momentum remains unchanged

396. A boat is sent across a river with a velocity of boat is $10 \, km/hr$. If the resultant velocity of boat is 10 km/hr, then velocity of the river is:

a) 10 km/hr

b) $8 \, km/hr$

c) 6 km/hr

d) $4 \, km/hr$

397. A particle moves along with x —axis. The position x of particle with respect to time t from origin given by $x = b_0 + b_1 t + b_2 t^2$. The acceleration of particle is

a) b_0

c) b2

d) $2b_2$

- 398. A particle is moving with constant acceleration from A to B in a straight line AB. If u and v are the velocities at A and B respectively, then its velocity at the midpoint c will be
 - a) $\left(\frac{u^2+v^2}{2u}\right)^2$
- b) $\frac{u+v}{2}$
- c) $\frac{v-u}{2}$
- $d)\sqrt{\frac{u^2+v^2}{2}}$
- 399. A student is standing at a distance of 50 metres from the bus. As soon as the bus begins its motion with an acceleration of $1 \, ms^{-2}$, the student starts running towards the bus with a uniform velocity u. Assuming the motion to be along a straight road, the minimum value of u, so that the student is able to catch the bus is
 - a) $52 ms^{-1}$
- b) $8 ms^{-1}$
- c) $10 \, ms^{-1}$
- d) $12 ms^{-1}$
- 400. A stone is thrown with an initial speed of $4.9 \, m/s$ from a bridge in vertically upward direction. It falls down in water after 2 sec. The height of the bridge is
 - a) 4.9 m
- b) 9.8 m
- c) 19.8 m
- d) 24.7 m
- 401. Two bodies are thrown vertically upwards with their initial speed in the ratio 2: 3. The ratio of the maximum heights reached by then and the ratio of their time taken by them to return back to the ground respectively are
 - a) 4:9 and 2:3
- b) 2 : 3 and $\sqrt{2}$: $\sqrt{3}$
- c) $\sqrt{2}$: $\sqrt{3}$ and 4:9
- d) $\sqrt{2}$: $\sqrt{3}$ and 2:3
- 402. Look at the graph (a) to (d) carefully and indicate which of these possibly represents one dimensional motion of a particle?

- 403. If the velocity of a particle is $(10 + 2t^2)m/s$, then the average acceleration of the particle between 2s and 5s is
 - a) $2m/s^2$
- b) $4m/s^2$
- c) $12m/s^2$
- d) $14m/s^2$
- 404. The acceleration of a particle is increasing linearly with time t as bt. The particle starts from the origin with an initial velocity v_0 . The distance travelled by the particle in time t will be
 - a) $v_0 t + \frac{1}{3} b t^2$
- b) $v_0 t + \frac{1}{3} b t^3$
- c) $v_0 t + \frac{1}{6} b t^3$
- d) $v_0 t + \frac{1}{2} b t^2$
- 405. A ball is thrown vertically upwards from the top of a tower at $4.9 \ ms^{-1}$. It strikes the pond near the base of the tower after 3 *seconds*. The height of the tower is
 - a) 73.5 m
- b) 44.1 m
- c) 29.4 m
- d) None of these

406. An object is dropped from rest. Its v-t graph is

- 407. An object is projected upwards with a velocity of 100m/s. It will strike the ground after (approximately)
 - a) 10 sec
- b) 20 sec
- c) 15 sec
- d) 5 sec
- 408. A constant force acts on a body of mass $0.9 \ kg$ at rest for 10s. If the body moves a distance of $250 \ m$, the magnitude of the force is
 - a) 3N

- b) 3.5N
- c) 4.0N
- d) 4.5N
- 409. The displacement- time graph for two particles A and B are straight lines inclined at angles of 30° and 60° with the time axis. The ratio of velocities of V_A : V_B is
 - a) 1:2
- b) 1: $\sqrt{3}$
- c) $\sqrt{3}$: 1
- d) 1:3

410. A particle shows distance-time curve as given in this figure. The maximum instantaneous velocity of the particle is around the point

a) D

b) A

c) B

d) C

- 411. Acceleration of a particle changes when
 - a) Direction of velocity changes

b) Magnitude of velocity changes

c) Both of above

- d) Speed changes
- 412. A particle is projected upwards. The times corresponding to height h while ascending and while descending are t_1 and t_2 respectively. The velocity of projection will be
 - a) gt_1

b) gt_2

- c) $g(t_1 + t_2)$
- d) $\frac{g(t_1+t_2)}{2}$
- 413. A particle is projected up with an initial velocity of $80 \, ft/sec$. The ball will be at a height of $96 \, ft$ from the ground after
 - a) 2.0 and 3.0 sec
- b) Only at 3.0 sec
- c) Only at 2.0 sec
- d) After 1 and 2 sec
- 414. Look at the graphs (a) to (d) carefully and indicate which of these possibly represents one dimensional motion of a particle

415. At he instant a motor bike starts from rest in a given direction, a car overtakes the motor bike, both moving in the same direction. The speed-time graphs for motor bike and car are represented by *OAB* and *CD* respectively.

Then

- a) At t = 18 s the motor bike and car are 180m apart
- b) At t = 18 s the motor bike and car are 720m apart
- The relative distance between motor bike and car reduces to zero at t = 27 s and both are 1080m far from origin
- d) The relative distance between motor bike and car always remains same
- 416. A cyclist starts from the centre *O* of a circular park of radius 1 km, reaches the edge *P* of the park, then cycles along the circumference and returns to the point *O* as shown in figure. If the round trip takes 10 min, the net displacement and average speed of the cyclist (in metre and kilometer per hour) are

- a) 0, 1
- b) $\frac{\pi + 4}{2}$, 0
- c) 214, $\frac{\pi + 4}{2}$
- d) 0, 21.4
- 417. An elevator car, whose floor to ceiling distance is equal to 2.7m, starts ascending with constant acceleration of $1.2ms^{-2}$. 2 sec after the start, a bolt begins falling from the ceiling of the car. The free fall time of the bolt is
 - a) $\sqrt{0.54}s$
- b) $\sqrt{6} s$
- c) $0.7 \, s$
- d) 1 s
- 418. A packet is dropped from a balloon which is going upwards with the velocity $12 \, m/s$, the velocity of the packet after 2 seconds will be
 - a) $-12 \, m/s$
- b) 12 m/s
- c) $-7.6 \, m/s$
- d) $7.6 \, m/s$
- 419. A car starts from rest and moves with uniform acceleration a on a straight road from time t = 0 to t = T. After that, a constant deceleration brings it to rest. In this process the average speed of the car is
 - a) $\frac{aT}{4}$

- b) $\frac{3aT}{2}$
- c) $\frac{aT}{2}$

- d) a7
- 420. A ball is thrown vertically upwards with a velocity of $25 ms^{-1}$ from the top of a tower of height 30 m. How long will it travel before it hits ground
 - a) 6s

b) 5s

c) 4s

- d) 12s
- 421. A particle of mass m is initially situated at the point P inside a hemispherical surface of radius r as shown in figure. A horizontal acceleration of magnitude a_0 is suddenly produced on the particle in the horizontal direction. If gravitational acceleration is neglected, the time taken by particle to touch the sphere again is

- a) $\sqrt{\frac{4r\sin\alpha}{a_0}}$
- b) $\sqrt{\frac{4r \tan \alpha}{a_0}}$
- c) $\sqrt{\frac{4r\cos\alpha}{a_0}}$
- d) None of these
- 422. A body A starts from rest with an acceleration a_1 . After 2 seconds, another body B starts from rest with an acceleration a_2 . If they travel equal distances in the 5th second, after the start of A, then the ration a_1 : a_2 is equal to
 - a) 5:9
- b) 5:7
- c) 9:5
- d) 9:7

- 423. Which of the following statements is correct?
 - a) When air resistance is negligible, the time of ascent is less than the time of descent
 - b) When air resistance is not negligible, time of ascent is less than the time of descent
 - c) When air resistance is not negligible, the time ascent is greater than the time of descent
 - d) When air resistance is not negligible, the time of ascent is lesser than the time of descent
- 424. A point starts moving in a straight line with a certain acceleration. At a time *t* after beginning of motion the acceleration suddenly becomes retardation of the same value. The time in which the point returns to the initial point is
 - a) $\sqrt{2t}$
 - b) $(2 + \sqrt{2})t$
 - c) $\frac{t}{\sqrt{2}}$
 - d) Cannot be predicted unless acceleration is given

425.	. A ball thrown upward from the top of a tower with speed v reaches the ground in t_1 second. If this ball is
	thrown downward from the top of he same tower with speed v it reaches the ground in t_2 second. In what
	time the ball shall reach the ground if it is allowed to falls freely under gravity from the top of the tower?

a)
$$\frac{t_1 + t_2}{2}$$

b)
$$\frac{t_1 - t_2}{2}$$

c)
$$\sqrt{t_1t_2}$$

d)
$$t_1 + t_2$$

426.

In figure, one car at rest and velocity of the light from head light is c, tehn velocity of light from head light for the moving car at velocity v, would be

a)
$$c + v$$

b)
$$c - v$$

c)
$$c \times v$$

427. A stone is dropped from a height *h*. Simultaneously, another stone is thrown up from the ground which reaches a height 4 *h*. The two stones cross other after time

a)
$$\sqrt{\frac{h}{8g}}$$

b)
$$\sqrt{8gh}$$

c)
$$\sqrt{2gh}$$

d)
$$\sqrt{\frac{h}{2g}}$$

428. A target is made of two plates, one of wood and the other of iron. The thickness of the wooden plate is 4 cm and that of iron plate is 2 cm. A bullet fired goes through the wood first and then penetrates 1 cm into iron. A similar bullet fired with the same velocity from opposite direction goes through iron first and then penetrates 2cm into wood. If a_1 and a_2 be the retardation offered to the bullet by wood and iron plates respectively, then

a)
$$t_1 + t_2$$

b)
$$a_2 = 2a_1$$

c)
$$a_1 = a_2$$

d) Data insufficient

429. Three balls A, B, C are thrown from a height h with equal speed upwards, downwards and horizontally respectively. What is the relation among speeds v_A , v_B , v_C with which they hit the ground?

a)
$$v_A = v_B = v_C$$

b)
$$v_A > v_C > v_B$$

c)
$$v_A = v_B > v_C$$

d)
$$v_A < v_C < v_B$$

430. A boat travels 50 km east, then 120 km north and finally it comes back to the starting point through the shortest distance. The total time of journey is 3 h. What is the average speed, in kmh⁻¹, over the entire trip?

431. A stone thrown vertically upward files past a window one second after it was thrown upward and after three second on its way downward. The height of the window above the ground is (Take $g = 10 \text{ms}^{-2}$)

a) 20 m

432. A particle starts from rest. Its acceleration (a) *versus* time (t) is as shown in the figure. The maximum speed of the particle will be

- a) 110 ms^{-1}
- b) 55 ms^{-1}
- c) 550 ms^{-1}
- d) 660 ms^{-1}

433. A person travels along a straight road for the first half time with a velocity v_1 and the next half time with a velocity v_2

The mean velocity V of the man is

a)
$$\frac{2}{V} = \frac{1}{v_1} + \frac{1}{v_2}$$
 b) $V = \frac{v_1 + v_2}{2}$ c) $V = \sqrt{v_1 v_2}$

b)
$$V = \frac{v_1 + v_2}{2}$$

c)
$$V = \sqrt{v_1 v_2}$$

$$d) V = \sqrt{\frac{v_1}{v_2}}$$

434. A body A is thrown up vertically from the ground with a velocity V_0 and another body B is simultaneously dropped from a height H. They meet at a height $\frac{H}{2}$ if V_0 is equal to

a)
$$\sqrt{2gH}$$

b)
$$\sqrt{gH}$$

c)
$$\frac{1}{2}\sqrt{gH}$$

d)
$$\sqrt{\frac{2g}{H}}$$

- 435. The three initial and final position of a man on the x —axis are given as
 - (i) (-8m, 7m) (ii) (7m, -3m) and (iii) (-7m, 3m)

Which pair gives the negative displacement

a) (i)

b) (ii)

- c) (iii)
- d) (i) and (iii)
- 436. A particle starts from rest and experiences constant acceleration for 6 s. if it travels a distance d_1 in the first two second, a distance d_2 in the next two seconds and a distance d_3 in the last two second, then

a)
$$d_1:d_2:d_3=1:1:1$$

b)
$$d_1:d_2:d_3=1:2:3$$

c)
$$d_1:d_2:d_3=1:3:5$$

d)
$$d_1:d_2:d_3=1:5:9$$

- 437. A body is thrown vertically up from the ground. It reaches a maximum height of 100m in 5sec. After what time it will reach the ground from the maximum height position
 - a) 1.2 sec
- b) 5 sec
- d) 25 sec
- 438. From a balloon rising vertically upwards as 5 ms⁻¹ a stone is thrown up at 10 ms⁻¹ relative to the balloon. Its velocity with respect to ground after 2 s is
 - (assume $g = 10 \text{ ms}^{-2}$)
 - a) Zero
- b) 5ms^{-1}
- c) 10 ms^{-1}
- d) 20 ms^{-1}
- 439. A 120 m long train is moving in a direction with speed 20 m/s. A train B moving with 30 m/s in the opposite direction and 130 m long crosses the first train in a time

- b) 36 s
- d) None of these
- 440. If a freely falling body travels in the last second a distance equal to the distance travelled by it in the first three second, the time of the travel is
 - a) 6 sec
- b) 5 sec
- c) 4 sec
- d) 3 sec

- 441. The area under acceleration-time graph gives
 - a) Distance travelled

b) Change in acceleration

c) Force acting

- d) Change in velocity
- 442. A particle is thrown vertically upwards. If it velocity at half of the maximum height is $10 \, m/sec$, then maximum height attained by it is (Take $g = 10 \text{ m/sec}^2$)

- c) 12 m
- d) 16 m
- 443. A particle starts from rest at t=0 and undergoes an acceleration a in ms^{-2} with time t in seconds which

Which one of the following plot represents velocity V in ms^{-1} versus time t in seconds

444.	. A train starts from station	with an acceleration 1ms	⁻² . A boy is 48 m behind th	e train with a constant	
	velocity $10 \mathrm{ms}^{-1}$, the minimum time after which the boy will catch the train is				
	a) 4.8 s	b) 8 s	c) 10 s	d) 12 s	
445.	The displacement of the p	article varies with time acc	cording to the relation $x =$	$\frac{k}{b}[1-e^{-bt}]$. Then the	
	velocity of the particle is			*	
	a) $k(e^{-bt})$	b) $\frac{k}{b^2 e^{-bt}}$	c) $k b e^{-bt}$	d) None of these	
446.	The velocity of a body of r	nass 20 kg decreases from	20 ms^{-1} to 5 ms^{-1} in a dist	ance of 100 m. Force on th	
	body is				
	a) -27.5 N	b) -47.5 N	c) -37.5 N	d) -67.5 N	
447.	5.77		e height 2s apart. How long	after the first body begins	
	to fall the two bodies will	be $40m$ apart? (Take $g = 1$	$10 \mathrm{ms}^{-2}$)		
	a) 1 s	b) 2 s	c) 3 s	d) 4 s	
448.	있었는데 하는데 나타 아니는 아들은 아들이 아들이 아니는	에게 있었다. 3000시간이 보기가 되게 요. 300000000000000000000000000000000000	ally upwards. When the sto		
	/*:		it above A. The greatest hei		
	a) $\frac{h}{3}$	b) $\frac{2h}{2}$	c) $\frac{h}{2}$	d) $\frac{5h}{3}$	
440	3	4	—	0	
449.	should be aimed	ed of 1000 m/sec in order	to hit a target 100 m away	g . If $g = 10 m/s^2$, the gun	
	a) Directly towards the ta	rant	b) 5 cm above the target		
	c) 10 cm above the target	· ·	d) 15 cm above the target		
450			s 24 m and 64 m in the firs		
430.	of 4 sec each.	illiforni acceleration travel	3 24 m and 04 m m the m 3	t two consecutive meet vals	
	Its initial velocity is				
	-	b) 10 m/sec	c) 5 m/sec	d) 2 m/sec	
451.			It rebounds to a height of 2		
	4.77.47	, the average acceleration (10.70		
	a) 2100 m/sec ² downwar	t	b) 2100 m/sec ² upwards	}	
	c) 1400 m/sec ²		d) 700m/sec ²		
452.	A car moves a distance of	200 m. It covers first half o	of the distance at speed 60	kmh^{-1} and the second half	
		speed is $40 kmh^{-1}$, the val			
	a) $30 \ kmh^{-1}$	b) $13 kmh^{-1}$	c) $60 kmh^{-1}$	d) $40 \ kmh^{-1}$	
453.	Free fall of an object (in v	acuum) is a case of motion	with		
	a) Uniform velocity	b) Uniform acceleration	c) Variable acceleration	d) Constant momentum	
454.	. A projectile is fired vertica	ally upwards with an initia	l velocity $\it u$. After an interv	al of T seconds a second	
	177 X	y upwards, also with initia	l velocity is		
	a) They meet at time $t = \frac{1}{2}$				
		$\frac{u}{g} + \frac{T}{2}$ and at a height $\frac{u^2}{2g} + \frac{g}{2g}$			
	(E00)(CO)(Co)	$\frac{u}{g} + \frac{T}{2}$ and at a height $\frac{u^2}{2g} - \frac{g}{2g}$	$\frac{gT^2}{8}$		
	d) They never meet				
455.		moves with uniform accele	eration. The distance cover	ed by the body in time t is	
	proportional to	1 5 2/2	2/2	2	
	a) \sqrt{t}	b) $t^{3/2}$	c) $t^{2/3}$	d) t ²	
456.			ht line is shown in the figu	re. The displacement and	
	distance travelled by the b	oody in 6 <i>sec</i> are respective	eıy		

- 468. The relation between time and distance is $t = \alpha x^2 + \beta x$, where α and β are constants. The retardation is
 - a) $2\alpha v^2$
- b) $2\beta v^3$
- c) $2\alpha\beta v^3$
- d) $2\beta^2 v^3$
- 469. A particle shows distance-time curve as given in this figure. The maximum instantaneous velocity of the particle is around the point

a) D

b) A

c) B

- d) C
- 470. A point particle starting from rest has a velocity that increase linearly with time such that v=pt, where $p=4\mathrm{ms}^{-2}$. The distance covered in the first 2 s will be
 - a) 6 m

b) 4 m

c) 8 m

- d) 10 m
- 471. A particle moves along the sides AB, BC, CD of a square of side 25 m with a velocity of 15 ms^{-1} . Its average velocity is

- a) $15 \, ms^{-1}$
- b) 10ms⁻¹
- c) $7.5ms^{-1}$
- d) $5ms^{-1}$
- 472. If a body is thrown up with the velocity of 15 m/s then maximum height attained by the body is $(g = 10 m/s^2)$
 - a) 11.25 m
- b) 16.2 m
- c) 24.5 m
- d) 7.62 m
- 473. Velocity-time (v-t) graph for a moving object is shown in the figure. Total displacement of the object during the same interval when there is non-zero acceleration and retardation is

- a) 60 m
- b) 50 m
- c) 30 m
- d) 40 m
- 474. Figure shows the acceleration-time graphs of a particle. Which of the following represents the corresponding velocity-time graphs?

475. A boggy of uniformly moving train is suddenly detached from train and stops after covering some distance. The distance covered by the boggy and distance covered by the train in the same time has relation

a) Both will be equal

b) First will be half of second

c) First will be 1/4 of second

- d) No definite ratio
- 476. An aeroplane is moving with horizontal velocity u at height h. The velocity of a packet dropped from it on the earth's surface will be (*g* is acceleration due to gravity)
 - a) $\sqrt{u^2+2gh}$
- b) $\sqrt{2gh}$
- c) 2gh
- d) $\sqrt{u^2-2gh}$
- 477. From the top of a tower of height 50m, a ball is thrown vertically upwards with a certain velocity. It hits the ground 10 s after it is thrown up. How much time does it take to cover a distance AB where A and B are two points 20m and 40m below the edge of the tower? $(g = 10 \text{ms}^{-2})$
 - a) 2.0 s
- b) 1.0 s
- c) 0.5 s
- d) 0.4 s
- 478. A ball is thrown vertically upwards. It was observed at a height h twice with a time interval Δt . The initial velocity of the ball is
 - a) $\sqrt{8gh + g^2(\Delta t)^2}$
- b) $8gh + \left(\frac{g\Delta t}{2}\right)^2$ c) $\frac{1}{2}\sqrt{8gh + g^2(\Delta t)^2}$ d) $\sqrt{8gh + 4g^2(\Delta t)^2}$
- 479. A particle moves along a semicircle of radius 10m in 5 seconds. The average velocity of the particle is
 - a) $2\pi \, ms^{-1}$
- b) $4\pi \ ms^{-1}$
- c) $2 ms^{-1}$
- d) $4 \, ms^{-1}$
- 480. A boy released a ball from the top of a building. It will clear a window 2m high at a distance 10m below the top in nearly
 - a) 1 s

- b) 1.3 s
- c) 0.6 s
- d) 0.13 s
- 481. A stone is dropped into water from a bridge 44.1m above the water. Another stone is thrown vertically downward 1s later. Both strike the water simultaneously. What was the initial speed of the second stone?
 - a) 12.25 ms^{-1}
- b) $14.75 \,\mathrm{ms^{-1}}$
- c) 16.23 ms^{-1}
- d) 17.15 ms^{-1}
- 482. The ratios of the distances traversed, in successive intervals of time by a body, falling from rest are
 - a) 1:3:5:7:9:...
- b) 2:4:6:8:10:... c) 1:4:7:10:13:...
- d) None of these
- a) $10 \, m/s^2$ d) $32 \, m/s^2$ 484. A balloon is rising vertically up with a velocity of 29 ms^{-1} . A stone is dropped from it and it reaches the

483. Equation of displacement for any particle is $s = 3t^3 + 7t^2 + 14t + 8m$. Its acceleration at time t = 1 sec is

- b) $16 \, m/s^2$
- c) $25 \, m/s^2$
- ground in 10 seconds. The height of the balloon when the stone was dropped from it is ($g = 9.8 \text{ ms}^{-2}$)
- a) 100 m b) 200 m c) 400 m d) 150 m 485. A particle moving with a uniform acceleration travels 24 m and 64 m in the first two consecutive intervals of 4 sec each.

Its initial velocity is

- a) 1 m/sec
- b) 10 m/sec
- c) 5 m/sec
- d) 2 m/sec
- 486. Acceleration-time graph of a body is shown. The corresponding velocity-time graph of the same body is

- 487. A particle is dropped vertically from rest a height. The time taken by it to fall through successive distances of 1 m each will then be
 - a) All equal, being equal to $\sqrt{2/g}$ second
 - b) In the ratio of the square roots of the integers 1, 2, 3......

In the ratio of the difference in the square roots of the integers i.e. $\sqrt{1}$, $(\sqrt{2}-\sqrt{1})$, $(\sqrt{3}-\sqrt{2})$, $(\sqrt{4}-\sqrt{1})$ $\sqrt{3}$).....

d) In the ratio of the reciprocal of the square roots of the integers i.e., $\frac{1}{\sqrt{1}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{4}}$

488. A particle moves along x-axis as

$$x = 4(t-2) + a(t-2)^2$$

Which of the following is true

a) The initial velocity of the particle is 4

b) The acceleration of particle is 2a

c) The particle is at origin at t = 0

d) None of these

489. The displacement-time graphs of two particles A and B are straight lines making angles of respectively 30° and 60° with the time axis. If the velocity of A is v_A and that of B is v_B , then the value of $\frac{v_A}{v_B}$ is

a) $\frac{1}{2}$

490. A bullet fired into a fixed target loses half of its velocity after penetrating 3 cm. How much further it will penetrate before coming to rest assuming that if faces constant resistance to motion

b) 1.0 cm

c) 3.0 cm

491. With what velocity a ball be projected vertically so that the distance covered by it in 5th second is twice the distance it covers in its 6th second ($g = 10 \text{ m/s}^2$)

a) $58.8 \, m/s$

b) $49 \, m/s$

c) $65 \, m/s$

d) 19.6 m/s

492. A body is moving along a straight line path with constant velocity. At an instant of time the distance travelled by it is S and its displacement is D, then

a) D < S

b) D > S

c) D = S

d) $D \leq S$

493. A body is released from a great height falls freely towards the earth. Another body is released from the same height exactly a second later. Then the separation between two bodies, 2 s after the release of the second body is, nearly

a) 15 m

b) 20 m

c) 25 m

494. A particle moves along a straight line such that its displacement at any time t is given by $S = t^3 - 6t^2 + 6t^2$ 3t + 4 metres

The velocity when the acceleration is zero is

a) $3ms^{-1}$

b) $-12ms^{-1}$

c) $42ms^{-1}$

d) $-9ms^{-1}$

495. A balloon is rising vertically up with a velocity of 29 ms⁻¹. A stone is dropped from it and it reaches the ground in 10 s. The height of the balloon when the stone was dropped from it is $(g = 9.8 \text{ ms}^{-2})$

a) 400 m

b) 150 m

c) 100 m

d) 200 m

496. The graph of displacement-time for a body travelling in a straight line is given. We can conclude that

a) The velocity is constant

b) The velocity increases uniformly.

c) The body is subjected to acceleration from O to A.

d) The velocity of the body at A is zero.

497. A balloon gong upward with a velocity of 12 ms⁻¹ is at a height of 65 m from the earth's surface at any instant. Exactly at this instant a ball drops from it. How much time will the ball take in reaching the surface of earth?

 $(g = 10 \text{ ms}^{-2})$

a) 5 s

b) 6 s

c) 10 s

d) None of these

- 498. A ball is dropped from a high rise platform at t = 0 starting from rest. After 6 seconds another ball is thrown downwards from the same platform with a speed v. The two balls meet at t = 18s. What is the value of v? (taking $g = 10 m/s^2$)
- b) $75 \, m/s$
- c) $55 \, m/s$
- d) $40 \, m/s$
- 499. Starting from rest, acceleration of a particle is a = 2(t-1). The velocity of the particle at t = 5s is
 - a) 15 m/sec
- b) 25 m/sec
- c) 5 m/sec
- d) None of these
- 500. A body of mass m is thrown upwards at an angle θ with the horizontal with velocity v. While rising up the velocity of the mass after t second will be
 - a) $\sqrt{(v\cos\theta)^2 + (v\sin\theta)^2}$

b) $\sqrt{(v\cos\theta - v\sin\theta)^2 - gt}$

c) $\sqrt{v^2 + g^2 t^2 - (2 v \sin \theta)gt}$

- d) $\sqrt{v^2 + g^2 + g^2 (2 v \cos \theta)gt}$
- 501. The motion of a particle is described by the equation $x = a + bt^2$ where a = 15 cm and b = 3 cm/s². Its instantaneous velocity at time 3 sec will be
 - a) 36 cm/sec
- b) 18 cm/sec
- c) 16 cm/sec
- d) 32 cm/sec
- 502. If the figure below represents a parabola, identify the physical quantities representing Y and X for constant acceleration

a) X = time, Y = velovity

b) X = velocity, Y = time

c) X = time, Y = displacement

- d) X = time, Y = acceleration
- 503. Two balls are dropped from height h and 2h respectively from the earth surface. The ratio of time of these balls to reach the earth is
 - a) 1 : $\sqrt{2}$
- b) $\sqrt{2}:1$
- c) 2:1
- 504. A body starts from rest, with uniform acceleration. If its velocity after n seconds is v,then its displacement in the last two seconds is
 - a) $\frac{2v(n+1)}{n}$
- b) $\frac{v(n+1)}{n}$
- c) $\frac{v(n-1)}{n}$
- d) $\frac{2v(n-1)}{n}$
- 505. The distance *x* covered by a particle in one-dimensional motion varies with time *t* as $x^2 = at^2 + 2bt + c$. The accelerating of the particle varies as

- b) $x^{3/2}$
- c) x^2

- d) $x^{-2/3}$
- 506. A particle moves for 20 seconds with velocity 3 m/s and then velocity 4 m/s for another 20 seconds and finally moves with velocity 5 m/s for next 20 seconds. What is the average velocity of the particle
- b) 4 m/s
- c) 5 m/s
- 507. The velocity-time graph of a body moving in a straight line is shown in the figure. The displacement and distance travelled by the body in 6 sec are respectively

- a) 8 m, 16 m
- b) 16 m, 8 m
- c) 16 m, 16 m
- d) 8 m, 8 m

508. A stone thrown upward with a speed u from the top of the tower reaches the ground with a velocity 3u. The height of the tower is

a) $3u^2/g$

b) $4u^{2}/g$

c) $6u^{2}/g$

d) $9u^2/g$

509. Two trains each 50 m long are travelling in opposite direction with velocity 10 m/s and 15 m/s. The time of crossing is

a) 2s

b) 4s

c) $2\sqrt{3}s$

d) $4\sqrt{3} s$

510. A projectile is fired vertically upwards with an initial velocity u. After an interval of T seconds a second projectile is fired vertically upwards, also with initial velocity is

a) They meet at time $t = \frac{u}{a}$ and at a height $\frac{u^2}{2c} + \frac{gT^2}{8}$

b) They meet at time $t = \frac{u}{g} + \frac{T}{2}$ and at a height $\frac{u^2}{2a} + \frac{gT^2}{8}$

c) They meet at time $t = \frac{u}{g} + \frac{T}{2}$ and at a height $\frac{u^2}{2g} - \frac{gT^2}{8}$

d) They never meet

511. A body of mass 10 kg is moving with a constant velocity of 10 m/s. When a constant force acts for 4 seconds on it, it moves with a velocity 2 m/sec in the opposite direction. The acceleration produced in it is

a) $3m/\sec^2$

b) $-3m/\sec^2$

c) $0.3m/\sec^2$

d) $-0.3m/\sec^2$

512. The position of a particle at any instant t is given by $x = a \cos \omega t$. The speed-time graph of the particle is

513. A train moves from one station to another 2 hours time. Its speed-time graph during this motion is shown in the figure. The maximum acceleration during the journey is

- a) $140 \, km \, h^{-2}$
- b) $160 \, km \, h^{-2}$
- c) $100 \, km \, h^{-2}$
- d) $120 \, km \, h^{-2}$
- 514. From the top of a tower, a particle is thrown vertically downwards with a velocity of 10ms⁻¹. The ratio of the distances covered by it in the 3rd and 2nd seconds of its motion is (Given, $g = 10 \text{ms}^{-2}$)

a) 7:5

b) 3:4

c) 4:3

d) 6:5

515. A body travels for 15 sec starting from rest with constant acceleration. If it travels distances S_1 , S_2 and S_3 in the first five seconds, second five seconds and next five seconds respectively the relation between S_1, S_2 and S_3 is

a) $S_1 = S_2 = S_3$ b) $5S_1 = 3S_2 = S_3$ c) $S_1 = \frac{1}{5}S_2 = \frac{1}{5}S_3$ d) $S_1 = \frac{1}{5}S^2 = \frac{1}{2}S_3$

516. In the given v - t graph, the distance travelled by the body in 5 will be

- a) 20 m
- b) 40 m
- c) 80 m
- d) 100 m
- 517. A particle moves along a straight line such that its displacement at any time t is given by $s = t^3 6t^2 + 3t + 4$. The velocity when its acceleration is zero is
 - a) 2 ms^{-1}
- b) 12 ms^{-1}
- c) -9 ms^{-1}
- d) 2 ms^{-1}
- 518. A train moves from one station to another 2 hours time. Its speed-time graph during this motion is shown in the figure. The maximum acceleration during the journey is

- a) $140 \ km \ h^{-2}$
- b) $160 \, km \, h^{-2}$
- c) $100 \, km \, h^{-2}$
- d) $120 \ km \ h^{-2}$
- 519. A body A is thrown up vertically from the ground with a velocity V_0 and another body B is simultaneously dropped from a height H. They meet at a height $\frac{H}{2}$ if V_0 is equal to
 - a) $\sqrt{2gH}$
- b) \sqrt{gH}
- c) $\frac{1}{2}\sqrt{gH}$
- d) $\sqrt{\frac{2g}{H}}$

520. Displacement (x) of a particle is related to time (t) as

$$x = at + bt^2 - ct^3$$

Where a, b and c are constants of the motion. The velocity of the particle when its acceleration is zero is given by

- a) $a + \frac{b^2}{c}$
- b) $a + \frac{b^2}{2c}$
- c) $a + \frac{b^2}{3c}$
- d) $a + \frac{b^2}{4c}$
- 521. A stone dropped from a building of height h and it reaches after t seconds on earth. From the same building if two stones are thrown (one upwards and other downwards) with the same velocity u and they reach the earth surface after t_1 and t_2 seconds respectively, then
 - a) $t = t_1 t_2$
- b) $t = \frac{t_1 + t_2}{2}$
- c) $t = \sqrt{t_1 t_2}$
- d) $t = t_1^2 t_2^2$
- 522. A goa can travel at a speed of 8 kmh⁻¹ in still water on a lake. In the flowing water of a stream, it can move at 8kmh⁻¹ relative to the water in the stream. If the stream speed is 3kmh⁻¹, how fast can the boat move past a tree on the shore in travelling (i) upstream (ii) downstream?
 - a) 5kmh^{-1} and 11 kmh^{-1}

b) 11kmh⁻¹ and 5 kmh⁻¹

c) 8kmh⁻¹ and 8 kmh⁻¹

- d) 5kmh⁻¹ and 5 kmh⁻¹.
- 523. A car is moving along a straight road with uniform, acceleration. It passes through two points P and Q separated by a distance with velocities 30kmh^{-1} and 40kmh^{-1} respectively. The velocity of car midway between P and Q is
 - a) 33.3km^{-1}
- b) 1 km^{-1}
- c) $25\sqrt{2}$ km⁻¹
- d) $35.35 \, \text{km}^{-1}$
- 524. If a train travelling at $72 \ kmph$ is to be brought to rest in a distance of $200 \ metres$, then its retardation should be
 - a) $20 ms^{-2}$
- b) $10 \, ms^{-2}$
- c) $2 ms^{-2}$
- d) $1ms^{-2}$
- 525. Figure shows the graphical variation of displacement with time for the case of a particle moving along a straight line. The accelerations of the particle during the intervals *OA*, *AB*, *BC* and *CD* are respectively

- a) OA AB BC CD
- b) -
- c) +

- 526. A bee files a line from a point A to another point B in 4 s with a velocity of |t-2| ms⁻¹. The distance between A and B in metre is

c) 6

- 527. The displacement-time graph of a moving particle is shown below. The instantaneous velocity of the particle is negative at the point

a) C

b) D

c) E

- 528. The retardation experienced by a moving motor boat, after its engine is cut off, is given by $\frac{du}{dt} = -kv^3$, where k is a constant.
 - If v_0 is the magnitude of the velocity at cut-off, the magnitude of the velocity at time t after the cut-off is

- c) $v_0 e^{-kt}$
- $d) \frac{v_0}{\sqrt{2v_0^2kt+1}}$
- 529. A body moves 6m north, 8m east and 10m vertically upwards, what is its resultant displacement from initial position?
 - a) $10\sqrt{2}$ m
- b) 10m
- c) $\frac{10}{\sqrt{2}}$ m
- d) $10 \times 2 \text{ m}$
- 530. A particle moving along a straight line has a velocity $v \text{ ms}^{-1}$, when it cleared a distance of y metre. These two are connected by the relation $v = \sqrt{49 + y}$. When its velocity is 1 ms⁻¹, its acceleration (in ms⁻²)is
 - a) 1

- 531. The distance between two particles moving towards each other is decreasing at the rate of 6m/sec. If these particles travel with same speeds and in the same direction, then the separation increase at the rate of 4m/sec. The particles have speeds as
- a) 5m/sec:1m/sec
- b) 4 m/sec : 1m/sec
- c) 4 m/sec: 2m/sec
- d) 5 m/sec : 2m/sec

- 532. Which graph represents a state of rest for an object
- c) a
- 533. When a ball is thrown up vertically with velocity V_0 , it reaches a maximum height of h'. If one wishes to triple the maximum height then the ball should be thrown with velocity
 - a) $\sqrt{3}V_0$
- b) $3V_0$
- c) $9V_0$

- d) $3/2V_0$
- 534. A body dropped from a height h with an initial speed zero, strikes the ground with a velocity $3 \, km/h$. Another body of same mass is dropped from the same height h with an initial speed -u' = 4km/h. Find the final velocity of second body with which it strikes the ground
 - a) $3 \, km/h$
- b) $4 \, km/h$
- c) $5 \, km/h$
- d) 12 km/h
- 535. A man is 45 m behind the bus when the bus start accelerating from rest with acceleration 2.5 m/s^2 . With what minimum velocity should the man start running to catch the bus

- a) 12 m/s
- b) 14 m/s
- c) 15 m/s
- d) 16 m/s
- 536. A body is moving from rest under constant acceleration and let S_1 be the displacement in the first (P-1) sec and S_2 be the displacement in the first P sec. The displacement in $(P^2 P + 1)^{th}$ see will be
 - a) $S_1 + S_2$
- b) $S_1 S_2$
- c) $S_1 S_2$
- d) S_1 / S_2
- 537. A body projected vertically upwards with velocity u returns to the starting point in 4 seconds. If $g=10~m/\sec^2$, the value of u is
 - a) 5 m/sec
- b) 10 m/sec
- c) 15 m/sec
- d) 20 m/sec
- 538. Two bodies of different masses m_a and m_b are dropped from two different heights a and b. The ratio of the time taken by the two to cover these distances are
 - a) a:b
- b) b:a
- c) $\sqrt{a}:\sqrt{b}$
- d) $a^2 : b^2$
- 539. A ball is thrown vertically upwards. Which of the following plots represents the speed-time graph of the ball during its flight if the air resistance is not ignored

- 540. A cricket ball is thrown up with a speed of 19.6 ms^{-1} . The maximum height it can reach is
 - a) 9.8 m
- b) 19.6 m
- c) 29.4 m
- d) 39.2 m
- 541. The displacement of the particle varies with time according to the relation $x = \frac{k}{b}[1 e^{-bt}]$. Then the velocity of the particle is
 - a) $k(e^{-bt})$
- b) $\frac{k}{h^2 e^{-bt}}$
- c) $k b e^{-bt}$
- d) None of these
- 542. A body of 5 kg is moving with a velocity of 20m/s. If a force of 100N is applied on it for 10s in the same direction as its velocity, what will now be the velocity of the body
 - a) $200 \, m/s$
- b) 220 m/s
- c) $240 \, m/s$
- d) 260 m/s
- 543. Consider a rubber ball freely falling from a height h=4.9 m onto a horizontal elastic plate. Assume that the duration of collision is negligible and the collision with the plate is totally elastic. Then the velocity as a function of time will be

- 544. A ball is thrown up under gravity ($g = 10 \text{ m/sec}^2$). Find its velocity after 1.0 sec at a height of 10m
 - a) $5 m/ sec^2$
- b) 5 m/sec
- c) 10 m/sec
- d) 15 m/sec

545. The velocity-time graph of a particle moving along a straight line is shown in figure. The displacement of the body in 5s is

a) 0.5m

b) 1m

c) 2m

d) 3m

546. At t=0, a stone of mass 10 gm is thrown straight up from the ground level with a speed 10 m/s. After 1 s, a second stone of the same mass is thrown from the same position with a speed 20 m/s. What is the position of the first stone from the ground level at that moment? (Take $g=10 \ m/s^2$)

a) 10 m

b) 1 m

c) 2 m

d) 5 m

547. A man is 45 m behind the bus, when the bus starts accelerating from rest with acceleration 2.5 ms⁻². With what minimum velocity should the man start running to catch the bus?

a) 12 ms^{-1}

b) 14 ms^{-1}

c) 15 ms⁻¹

d) 16 ms^{-1}

548. The initial velocity of a body moving along a straight line is 7 m/s. It has a uniform acceleration of $4 m/s^2$. The distance covered by the body in the 5^{th} second of its motion is

a) 25 m

b) 35 m

c) $50 \, m$

d) 85 m

549. A very large number of balls are thrown vertically upwards in quick succession in such a way that the next ball is thrown when the previous one is at the maximum height. If the maximum height is 5m, the number of ball thrown per minute is (take $g = 10 \text{ ms}^{-2}$)

a) 120

b) 80

c) 60

d) 40

550. A ball dropped from the 9th story of a multi-storeyed building reaches the ground in 3s. In the first second of its free fall, it passes through n stories, where n is equal to (Take $g = 10 \text{ms}^{-2}$)

a) 1

h) 2

c) 3

d) 4

551. Two balls are dropped from height *h* and 2*h* respectively from the earth surface. The ratio of time of these balls to reach the earth is

a) $1 : \sqrt{2}$

b) $\sqrt{2} : 1$

c) 2:1

d) 1:4

552. A car travels half the distance with constant velocity of 40 *kmph* and the remaining half with a constant velocity of 60 *kmph*. The average velocity of the car in *kmph* is

a) 40

b) 45

c) 48

d) 50

553. The displacement x of a particle at the instant when its velocity v is given by $v = \sqrt{3x + 16}$. Its acceleration and initial velocity are

a) 1.5 units, 4 units

b) 3 units, 4 units

c) 16 units, 1.6 units

d) 16 units, 3 units

554. The velocity of a particle is $v = v_0 + gt + ft^2$. If its position is x = 0 at t = 0, then its displacement after unit time (t = 1)is

a) $v_0 = 2g + 3f$

b) $v_0 + g/2 + f/3$

c) $v_0 + g + f$

d) $v_0 + g/2 + f$

555. A body falls from rest, its velocity at the end of first second is (g = 32ft/sec)

a) 16 ft/sec

b) 32 ft/sec

c) 64 ft/sec

d) 24 ft/sec

556. A body begins to walk eastward along a street in front of his house and the graph of his position from home is shown in the following figure. His average speed for the whole time interval is equal to

	a)	8	m/min
,	TI		

c)
$$\frac{8}{3}$$
 m/min

d) 2 m/min

557. The ratios of the distances traversed, in successive intervals of time by a body, falling from rest are

d) None of these

558. If the velocity of a particle is given by $v = (180 - 16x)^{1/2} \text{ms}^{-1}$, then its acceleration will be

b)
$$8 \text{ ms}^{-2}$$

c)
$$-8 \text{ ms}^{-2}$$

d)
$$4 \text{ ms}^{-2}$$

559. The initial velocity of a body moving along a straight line is 7 m/s. It has a uniform acceleration of $4 m/s^2$. The distance covered by the body in the 5th second of its motion is

560. A car moving with a speed of 50 kmh⁻¹, can be stopped by brakes after at least 6 m. if the same car is moving at a speed of 100 kmh⁻¹, the minimum stopping distance is

561. A small block sides without friction down an inclined plane starting from rest. Let S_n be the distance travelled from time t = n - 1 to t = n. Then $\frac{S_n}{S_{n+1}}$ is

a)
$$\frac{2n-1}{2n}$$

b)
$$\frac{2n+1}{2n-1}$$
 c) $\frac{2n-1}{2n+1}$

c)
$$\frac{2n-1}{2n+1}$$

d)
$$\frac{2n}{2n+1}$$

562. A body has speed of V,2V and 3V in first 1/3 of distance S, seconds 1/3 of S and third 1/3 of S respectively. Its average speed will be

c)
$$\frac{18}{11}V$$

d)
$$\frac{11}{18}V$$

563. A particle projected vertically upwards attains a maximum height H. If the ratio of the times to attain a height h(h < H) is $\frac{1}{3}$. Then

a)
$$4h = 3H$$

b)
$$3h = 4H$$

c)
$$3h = H$$

d)
$$4h = H$$

564. The displacement-time graph of moving particle is shown below

The instantaneous velocity of the particle is negative at the point

565. A bus begins to move with an acceleration of $1ms^{-2}$. A man who is 48m behind the bus starts running at $10 \, ms^{-1}$ to catch the bus. The man will be able to catch the bus after

566. The driver of an express train moving with a velocity v_1 finds that a goods train is moving with a velocity v_2 in the same direction on the same track. He applies the brakes and produces a retardation a. The minimum time required to avoid collision is

a)
$$\frac{v_1 - v_2}{a}$$

b)
$$\frac{v_1}{a}$$

c)
$$\frac{v_2}{a}$$

d)
$$\frac{v_1 + v_2}{a}$$

567. A ball is released from the top of a tower of height h metre. It takes T sec to reach the ground. What is the position of the ball in $\frac{T}{2}$ s?

a) h/9 m from the ground

b) 7h/9 m from the ground

c) 8h/9 m from the ground

d) 17h/18 m from the ground

568. A particle is constrained to move on a straight line path. It returns to the starting point after 10 sec. The total distance covered by the particle during this time is 30 m. Which of the following statement about the motion of the particle is false

a) Displacement of the particle is zero

b) Average speed of the particle is 3 m/s

c) Displacement of the particle is 30 m

d) Both (a) and (b)

569. The graph of displacement v/s time is

Its corresponding velocity-time graph will be

570. If the velocity v of a particle moving along a straight line decreases linearly with its displacement s from 20ms^{-1} to a value approaching zero s = 30 m, then acceleration of the particle at s = 15 m is

a)
$$\frac{2}{3}$$
 ms⁻²

b)
$$-\frac{2}{3}$$
 ms⁻²

c)
$$\frac{20}{3}$$
 ms⁻²

d)
$$-\frac{20}{3}$$
 ms⁻²

571. From the top of a tower, a stone is thrown up and reaches the ground in time $t_1 = 9$ s. A second stone is thrown down with the same speed and reaches the ground in time $t_2 = 4$ s. A third stone is released from rest and reaches the ground in time t_3 , which is equal to

- a) 6.5 s
- b) 6.0 s
- d) 65 s

572. A ball is projected upwards from a height h above the surface of the earth with velocity v. The time at which the ball strikes the ground is

a)
$$\frac{v}{g} + \frac{2hg}{\sqrt{2}}$$

b)
$$\frac{v}{g} \left[1 - \sqrt{1 + \frac{2h}{g}} \right]$$

c)
$$\frac{v}{g} \left[1 + \sqrt{1 + \frac{2gh}{v^2}} \right]$$

b)
$$\frac{v}{g} \left[1 - \sqrt{1 + \frac{2h}{g}} \right]$$
 c) $\frac{v}{g} \left[1 + \sqrt{1 + \frac{2gh}{v^2}} \right]$ d) $\frac{v}{g} \left[1 + \sqrt{v^2 + \frac{2h}{g}} \right]$

573. The displacement	t of a particle is given by y =	$=a+bt+ct^2-dt^4$. The	initial velocity and acceleration are
respectively			2 7 0
a) $b, -4d$	b) $-b$, $2c$	c) b, 2c	d) $2c, -4d$
574. A car starts from	station and moves along th	e horizontal road by a ma	chine delivering constant power.
The distance cove	ered by the car in time t is p	roportional to	
a) <i>t</i> ²	b) t ^{3/2}	c) $t^{2/3}$	d) t ³
575. A 210 m long trai	n is moving due North at a	speed of $25 m/s$. A small I	bird is flying due South a little above
the train with spe	ed 5 m/s . The time taken b	y the bird to cross the tra	in is

- d) 10s a) 6s b) 7s c) 9s 576. Two identical metal spheres are released from the top of a tower after t seconds of each other such that they fall along the same vertical line. If air resistance is neglected, then at any instant of time during their fall
 - a) The difference in their displacements remains the same
 - b) The difference between their speeds remains the same
 - c) The difference between their heights above ground is proportional to t^2
 - d) The difference between their displacements is proportional to t
- 577. Time taken by an object falling from rest to cover the height of h_1 and h_2 is respectively t_1 and t_2 then the ratio of t_1 to t_2 is
 - a) $h_1: h_2$
- b) $\sqrt{h_1}$: $\sqrt{h_2}$
- c) $h_1: 2h_2$
- d) $2h_1:h_2$
- 578. A body projected vertically upwards crosses a point twice in its journey at a height h just after t_1 and t_2 second. Maximum height reached by the body is
 - a) $\frac{g}{4}(t_1 + t_2)^2$
- b) g $\left(\frac{t_1 + t_2}{4}\right)^2$
- c) $2g\left(\frac{t_1+t_2}{4}\right)^2$
- 579. A body starts from rest and moves with uniform acceleration. Which of the following graphs represent its motion

580. An object is moving with a uniform acceleration which is parallel to its instantaneous direction of motion. The displacement (s) -velocity (v)graph of this object is

- 581. A body falling from a high Minaret travels 40 m in the last 2 seconds of its fall to ground. Height of Minaret in meters is (take $g = 10 \text{ m/s}^{-2}$)
 - a) 60
 - b) 45
 - c) 80
- 582. A train has a speed of $60 \, km/h$, for the first one hour and $40 \, km/h$ for the next half hour. Its average speed in km/h is

- b) 53.33
- c) 48

- 583. A body falls from rest in the gravitational field of the earth. The distance travelled in the fifth second of its motion is $(g = 10 m/s^2)$
 - a) 25m
- b) 45m
- c) 90m
- d) 125m

584. A bind person after walking 10 steps in one direction each of length 80cm, turns rand right by 90°. After walking a total of 40 steps, the maximum displacement of the person point can be				
	a) Zero	b) 8√2m	c) 16√2m	d) 32 m
585	NO. 2 CONTROL NO. STATE OF THE PARTY OF THE		h is 5 m above the ground.	
505.	the tap at the instant the f		nd. How far above the ground	
	that instant	L) 2.75	-> 4.00	D 1 25
F0/	a) 2.50 m	b) 3.75 m	c) 4.00 m	d) 1.25 m
586.	0 = 0			
	(0 0 0 = C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	=		
	In figure, one car at rest ar	nd velocity of the light fron	n head light is c, tehn veloc	ity of light from head light
	for the moving car at veloc	city v, would be		
	a) $c + v$	b) $c - v$	c) $c \times v$	d) c
587.	If a car covers 2/5th of the	total distance with v_1 spe	ed and 3/5 th distance with	v_2 then average speed is
	a) $\frac{1}{2}\sqrt{v_1v_2}$	b) $\frac{v_1 + v_2}{2}$	$2v_1v_2$	d) $\frac{5v_1v_2}{3v_2+2v_2}$
	a) $\frac{1}{2}\sqrt{v_1v_2}$	b) <u>2</u>	c) $\frac{v_1 + v_2}{v_1 + v_2}$	a) $\frac{3v_1 + 2v_2}{3v_1 + 2v_2}$
588.	Two trains each 50 m long	g are travelling in opposite	direction with velocity 10	m/s and 15 m/s . The time
	of crossing is			
	a) 2s	b) 4s	c) $2\sqrt{3}s$	d) $4\sqrt{3} s$
589.	A car travels equal distance	ces in the same direction w	rith velocities 60kmh^{-1} , 20	km h ⁻¹ and 10
	en de la completa de La completa de la com		over the whole journey of n	
	a) 8 ms ⁻¹	b) 7 ms ⁻¹	c) 6 ms ⁻¹	d) 5 ms ⁻¹
590.	A particle moving in a stra	ight line covers half the di	stance with speed of 3m/s.	The other half of the
	distance is covered in two	equal time intervals with	speed of 4.5 m/s and 7.5 m	/s respectively. The
	average speed of particle of	during this motion is		
	a) 4m/s	b) 5m/s	c) 5.5m/s	d) 4.8m/s
591.	A man goes 10 m towards	North, then 20 m towards	east then displacement is	
	a) 22.5m	b) 25m	c) 25.5m	d) 30m
592.	Two spheres of same size,	one of mass 2 kg and anot	her of mass 4 kg, are dropp	ed simultaneously from
	the top of Qutab Minar (he same	eight $= 72 \text{ m}$). When they a	are 1 m above the ground, t	he two spheres have the
	a) Momentum	b) Kinetic energy	c) Potential energy	d) Acceleration
593.	A body of mass 3 kg falls f		ilding 100m high and burie	es itself 2m deep in the
	sand. The time of penetrat	tion will be	NZ) NTS	(22)
	a) 0.09 s	b) 0.9 s	c) 9 s	d) 10 s
594.	The distance travelled by	a particle starting from res	t and moving with an accel	eration $\frac{4}{7}ms^{-2}$, in the third
	second is	,		3
		19		
	a) $\frac{10}{3}m$	b) $\frac{19}{3}m$	c) 6 m	d) 4 m
595.	A train is moving towards	east and a car is along nor	th, both with same speed. T	The observed direction of
	car to the passenger in the		Tie	
	a) East- north direction			
	b) West-north direction			
	c) South-east direction			
	d) None of these			

596. Velocity of a body on i	reaching the point from v	vhich it was projected upwar	ds, is
a) $v = 0$	b) $v = 2u$	c) $v = 0.5u$	d) $v = u$
597. A particle moves 200	cm in the first 2s and 220	cm in the next 4s with unifo	rm deceleration. The velocity
of the particle at the e		× 9	00 C #
a) 12 cms ⁻¹	1075	c) 10cms ⁻¹	d) 5 cms ⁻¹
598. The motion of a body	falling from rest in a resi	stive medium is described by	y the equation $\frac{dv}{dt} = a - bv$,
where a and b are con	stants. The velocity at an	y time t is	
a) $a(1-b^{2t})$	b) $\frac{a}{b}(1 - e^{-bt})$	c) abe^{-t}	d) $ab^2(1-t)$
599. A stone is shot straigh	U		m high. The speed with which
it strikes the ground is	(77) (A		
a) 60 <i>m/sec</i>	b) 65 m/sec	c) 70 m/sec	d) 75 <i>m/sec</i>
	and the configuration of the fifth and the contract of the con-	at a uniform rate of 12ms^{-1} .	The displacement of the stone
from the point of relea	ase after 10s is		
a) 725 m	b) 610 m	c) 510 m	d) 490 m
		speed v_1 and the rest half dis	stance with speed v_2 . Its
	the complete journey is	11 12	2
a) $\frac{v_1^2 v_2^2}{v_1^2 + v_2^2}$	b) $\frac{v_1 + v_2}{2}$	c) $\frac{v_1v_2}{v_1+v_2}$	d) $\frac{2v_1v_2}{v_1+v_2}$
-12	-	idius R . A very small spheric	1 1 2
time taken by this ball	. 경기에 가장 맛있다면 하는 것이 되는 것이 되었다면 하는 것이 없는 것이 없다면	dius A. A very sman spherica	ai ban sups on this wire. The
A	to sup Irom A to B is		
$\left(\frac{\epsilon}{\rho}\right)^{\theta}$			
, • • • • •			
B R			
С		_	
a) $\frac{2\sqrt{gR}}{R}$	b) $2\sqrt{gR} \cdot \frac{\cos\theta}{a}$	c) 2 $\frac{R}{a}$	d) ======
$g\cos\theta$	g	\sqrt{g}	$\sqrt{g}\cos\theta$
603. A river is flowing from	W to E with a speed of	5 m/min. A man can swim in	still water with a velocity
10 m/min. In which d	irection should the man s	swim so as to take the shorte	st possible path to go to the
south			
a) 30° with downstrea		b) 60° with downstrea	am
c) 120° with downstr		d) South	
			given by $a = -kv^3$, where k is a the velocity at time t after the
cut off is	nagnitude of velocity at c	ut-on, then the magnitude of	the velocity at time t after the
	v_0	v_0	v_0
a) $\frac{v_0}{2ktv_0^2}$	b) $\frac{1}{1+2 kt v_0^2}$	c) $\frac{v_0}{\sqrt{1-2kv_0^2}}$	d) $\sqrt{1 + 2 kt v_0^2}$
605. A body has speed of V			and third $1/3$ of S respectively.
Its average speed will		# *	
a) <i>V</i>	b) 2 <i>V</i>	c) $\frac{18}{11}V$	d) $\frac{11}{V}$
5-10-1 0-10-10-10-1	10 10 00 00 00 00 00 00 00 00 00 00 00 0	**	10
	570	e velocity and average speed	
a) Unity	b) Unity or less	c) Unity or more	d) Less than unity g through a wooden block of
	retardation, assuming it t	B. B. T. H. M.	g un ough a wooden block of
		c) $13.5 \times 10^4 m/s^2$	d) $15 \times 10^4 m/s^2$
.,	-, -= ·· · · · · · · · · · · · · · · · · ·	-, -010 1. 10 mgs	-,

CLICK HERE >>>

608. A ball is thrown vertically upwards from the top of a tower of height h with velocity v. The ball strikes the

a)
$$\frac{v}{g} \left[1 + \sqrt{1 + \frac{2gh}{v^2}} \right]$$
 b) $\frac{v}{g} \left[1 - \sqrt{1 + \frac{2gh}{v^2}} \right]$ c) $\frac{v}{g} \left(1 + \frac{2gh}{v^2} \right)^{1/2}$ d) $\frac{v}{g} \left(1 - \frac{2gh}{v^2} \right)^{1/2}$

c)
$$\frac{v}{g} \left(1 + \frac{2gh}{v^2} \right)^{1/2}$$

$$d)\frac{v}{g}\left(1-\frac{2gh}{v^2}\right)^{1/2}$$

609. A body is at rest at x = 0. At t = 0, it starts moving in the positive x –direction with a constant acceleration. At the same instant another body passes through x = 0 moving in the positive x —direction with a constant speed. The position of the first body is given by $x_1(t)$ after time t and that of the second body by $x_2(t)$ after the same time interval. Which of the following graphs correctly describes $(x_1 - x_2)$ as a function of time t?

610. The time taken by a block of wood (initially at rest) to slide down a smooth inclined plane 9.8 m long (angle of inclination is 30°) is

a)
$$\frac{1}{2}$$
 sec

- b) 2sec
- c) 4sec
- d) 1sec
- 611. A ball of mass m_1 and another ball of mass m_2 are dropped from equal height. If time taken by the balls are t_1 and t_2 respectively, then

a)
$$t_1 = \frac{t_2}{2}$$

b)
$$t_1 = t_2$$

b)
$$t_1 = t_2$$
 c) $t_1 = 4t_2$

d)
$$t_1 = \frac{t_2}{4}$$

- 612. A person moves 30 m north and then 20 m towards east and finally $30\sqrt{2}$ m in south-west direction. The displacement of the person from the origin will be
 - a) 10 m along north
- b) 10 m along south
- c) 10 m along west
- d) Zero
- 613. The variation of velocity of a particle with time moving along a straight line is illustrated in the following figure. The distance travelled by the particle in four seconds is

- a) 60 m
- b) 55 m
- c) 25 m
- d) 30 m
- 614. A ball is thrown up under gravity ($g = 10 \text{ m/sec}^2$). Find its velocity after 1.0 sec at a height of 10m
 - a) $5 m/ sec^2$
- b) 5 m/sec
- c) 10 m/sec
- d) 15 m/sec
- 615. A bus moves over a straight level road with a constant acceleration a. A body in the bus drops a ball outside. The acceleration of the ball with respect to the bus and the earth are respectively
 - a) a and g
- b) a + g and g a
- c) $\sqrt{a^2 + g^2}$ and g
- d) $\sqrt{a^2 + g^2}$ and a

- 618. Two cars *A* and *B* are moving with same speed of 45 *km/hr* along same direction. If a third car *C* coming from the opposite direction with a speed of 36 *km/hr* meets two cars in an interval of 5 minutes, the distance of separation of two cars *A* and *B* should be (in *km*)

 a) 6.75

 b) 7.25

 c) 5.55

 d) 8.35
- 619. An elevator is going up. The variation in the velocity of the elevator is as given in the graph. What is the height to which the elevator takes the passengers?

- a) 3.6 m
- b) 28.8 m
- c) 36.0 m
- d) 72.0 m
- 620. A body is projected up with a speed 'u' and the time taken by it is T to reach the maximum height H. Pick out the correct statement
 - a) It reaches H/2 in T/2 sec

b) It acquires velocity u/2 in T/2sec

c) Its velocity is u/2 at H/2

- d) Same velocity at 2T
- 621. The displacement-time graphs of two moving particles make angles of 30° and 45° with the *x*-axis. The ratio of the two velocities is

- a) $\sqrt{3}:1$
- b) 1:1
- c) 1:2
- d) $1:\sqrt{3}$
- 622. A parachutist after bailing out falls 50 m without friction. When parachute opens, it decelerates at 2 ms⁻². He reaches the ground with a speed of 3 ms⁻¹. At what height, did he bail out?
 - a) 91 m
- b) 182 m
- c) 293 m
- d) 111 m
- 623. A ball is thrown vertically upwards from the top of a tower at $4.9 \ ms^{-1}$. It strikes the pond near the base of the tower after $3 \ seconds$. The height of the tower is
 - a) 73.5 m
- b) 44.1 m
- c) 29.4 m
- d) None of these
- 624. Two cars are moving in the same direction with a speed of 30kmh⁻¹. They are separated from each other by 5 km. Third car moving in the opposite direction meets the two cars after an interval of 4 min. What is the speed of the third car?
 - a) 30 kmh^{-1}
- b) 35 kmh^{-1}
- c) 40 kmh^{-1}
- d) 45 kmh^{-1}
- 625. A body starts from rest with uniform acceleration. If its velocity after n second is v, then its displacement in the last 2 s is

- a) $\frac{2v(n+1)}{n}$
- b) $\frac{v(n+1)}{n}$
- c) $\frac{v(n-1)}{n}$
- d) $\frac{2v(n-1)}{n}$
- 626. The motor of an electric train can give it an acceleration of 1 ms⁻² and brakes can give a negative acceleration of 3 ms⁻². The shortest time in which the train can make a trip between the two stations 1215 m apart is
 - a) 113.6 s
- b) 56.9 s
- c) 60 s
- d) 55 s
- 627. A ball is dropped vertically from a height d above the ground. It hits the ground and bounces up vertically to a height d/2. Neglecting subsequent motion and air resistance, its velocity v varies with the height h above the ground as

628. Figure given shows the distance -time graph of the motion of a car. It follows from the graph that the car is

a) At rest

b) In uniform motion

c) In non-uniform acceleration

- d) Uniformly accelerated
- 629. A body is moving along a straight line path with constant velocity. At an instant of time the distance travelled by it is s and its displacement is D, then
 - a) D < s
- b) D > s
- c) D = s
- 630. A man drops a ball downside from the roof of a tower of height 400 m. At the same time another ball is thrown upside with a velocity $50 \, m/s$. From the surface of the tower, then they will meet at which height from the surface of the tower
 - a) 100 m
- b) 320 m
- c) 80 m
- d) 240 m
- 631. The velocity of a particle moving in a straight line varies with time in such a manner that v versus t graph is velocity is \emph{v}_m and the total time of motion is \emph{t}_0

- (i) Average velocity of the particle is $\frac{\pi}{4}v_m$
- (ii) such motion cannot be realized in practical terms
- a) Only (i) is correct

b) Only (ii) is correct

c) Both (i) and (ii) are correct

- d) Both (i) and (ii) are wrong
- 632. A body is thrown vertically upwards with a velocity u. Find the true statement from the following
 - a) Both velocity and acceleration are zero at its highest point
 - b) Velocity is maximum and acceleration is zero at the highest point
 - c) Velocity is maximum and acceleration is g downwards at its highest point
 - d) Velocity is zero at the highest point and maximum height reached is $u^2/2g$
- 633. The velocity of a body depends on time according to the equation $v = 20 + 0.1t^2$. The body is undergoing
 - a) Uniform acceleration

b) Uniform retardation

c) Non-uniform acceleration

- d) Zero acceleration
- 634. The initial velocity of a particle is u (at t=0) and the acceleration f is given by at. Which of the following relation is valid

a)
$$v = u + at^2$$

b)
$$v = u + a \frac{t^2}{2}$$
 c) $v = u + at$

c)
$$v = u + at$$

- d) v = u
- 635. A ball is thrown vertically upward. Ignoring the air resistance, which one of the following plot represents the velocity-time plot for the period ball remains in air?

636. A body is moving according to the equation $x = at + bt^2 - ct^3$ where x = displacement and a, b and c are constants. The acceleration of the body is

a)
$$a + 2bt$$

b)
$$2b + 6ct$$

c)
$$2b - 6ct$$

d)
$$3b - 6ct^2$$

637. A ball is projected upwards from a height h above the surface of the earth with velocity v. The time at which the ball strikes the ground is

a)
$$\frac{v}{g} + \frac{2hg}{\sqrt{2}}$$

b)
$$\frac{v}{g} \left[1 - \sqrt{1 + \frac{2h}{g}} \right]$$

c)
$$\frac{v}{g} \left[1 + \sqrt{1 + \frac{2gh}{v^2}} \right]$$

b)
$$\frac{v}{g} \left[1 - \sqrt{1 + \frac{2h}{g}} \right]$$
 c) $\frac{v}{g} \left[1 + \sqrt{1 + \frac{2gh}{v^2}} \right]$ d) $\frac{v}{g} \left[1 + \sqrt{v^2 + \frac{2h}{g}} \right]$

- 638. Time taken by an object falling from rest to cover the height of h_1 and h_2 is respectively t_1 and t_2 then the ratio of t_1 to t_2 is
 - a) $h_1: h_2$
- b) $\sqrt{h_1}$: $\sqrt{h_2}$
- c) $h_1: 2h_2$
- d) $2h_1:h_2$
- 639. Two cars A and B at rest at same point initially. If A starts with uniform velocity of 40 m/sec and B starts in the same direction with constant acceleration of $4m/s^2$, then B will catch A after how much time
 - a) 10 sec
- b) 20 sec
- c) 30 sec
- d) 35 sec
- 640. A body dropped from a height h with an initial speed zero, strikes the ground with a velocity $3 \, km/h$. Another body of same mass is dropped from the same height h with an initial speed -u' = 4km/h. Find the final velocity of second body with which it strikes the ground
 - a) $3 \, km/h$
- b) $4 \, km/h$
- c) $5 \, km/h$
- d) $12 \, km/h$

641. The correct statement from the following is

	b) A body having	zero velocity will necessaril	y have zero acceleration	
	c) A body having	uniform speed can have onl	y uniform acceleration	
d) A body having non-uniform velocity will have zero acceleration				
642	. An aeroplane flies	400m north and 300m sou	th and then flies 1200m up	pwards, then net displacement is
	a) 1500m	b) 1400m	c) 1300m	d) 1200m
612	A very large numb	per of halls are thrown verti	cally unwards in quick suc	reaction in such a way that the ne

a) A body having zero velocity will not necessarily have zero acceleration

d) 1200m 643. A very large number of balls are thrown vertically upwards in quick succession in such a way that the next ball is thrown when the previous one is at the maximum height. If the maximum height is 5m, the number of ball thrown per minute is (take $g = 10 \text{ ms}^{-2}$)

b) 80

c) 60

644. A constant force acts on a body of mass 0.9 kg at rest for 10s. If the body moves a distance of 250 m, the magnitude of the force is

b) 3.5N

c) 4.0N

645. The speed of body moving with uniform acceleration is u.This speed is doubled while covering distance S, its speed would be become

a) $\sqrt{3}u$

b) $\sqrt{5}u$

c) $\sqrt{11}u$

d) $\sqrt{7}u$

646. The variation of velocity of a particle moving along a straight line is shown in the figure. The distance travelled by the particle in 4s is

b) 30 m

c) 55 m

d) 60 m

647. A body falling for 2 seconds covers a distance S is equal to that covered in next second. Taking g = $10m/s^2, S =$

a) 30 m

b) 10 m

c) 60 m

d) 20 m

648. A ball A is thrown up vertically with speed u and at the same instant another ball B is released from a height *h*. At time *t*, the speed of *A* relative to *B* is

b) 2u

c) u - gt

d) $\sqrt{(u^2-gt)}$

649. A boat moves with a speed of $5 \, km/h$ relative to water in a river flowing with a speed of $3 \, km/h$ and having a width of 1 km. The minimum time taken around a round trip is

a) 5 min

b) 60 min

c) 20 min

d) 30 min

650. A car A is travelling on a straight level road with a uniform speed of 60 km/h.

It is followed by another car B which is moving with a speed of 70km/h. When the distance between them is 2.5 km, the car B is given a deceleration of 20 km/ h^2 . After how much time will B catch up with A.

a) 1 hr

b) 1/2hr

c) 1/4hr

d) 1/8hr

651. A body is released from a great height and falls freely towards the earth. Another body is released from the same height exactly one second later. The separation between the two bodies, two seconds after the release of the second body is

a) 4.9 m

b) 9.8 m

c) 19.6 m

d) 24.5 m

652. A boat moves with a speed of $5 \, km/h$ relative to water in a river flowing with a speed of $3 \, km/h$ and having a width of $1 \, km$. The minimum time taken around a round trip is

a) 5 min

b) 60 min

c) 20 min

d) 30 min

653. The particles *A*, *B* and *C* are thrown from the top of a tower with the same speed. *A* is thrown up, *B* is thrown down and C is horizontally. They hit the ground with speeds V_A , V_B and V_C respectively

a) $V_A = V_B = V_C$

b) $V_A = V_B > V_C$ c) $V_B > V_C > V_A$ d) $V_A > V_B = V_C$

654. A body starts from rest and falls vertically from a height of 19.6m. If $g = 9.8 \text{ms}^{-2}$, then the distance travelled by the body in the last 0.1s of its motion is

a) 1.9 m		b) 0.049 m	c) 17.7 m	d) 19.6 m
655. The disp	lacement of the	body along x — axis depen	ds on time as $\sqrt{x} = t + 1$. T	hen the velocity of body
a) Incre	ases with time	b) Decreases with time	c) Independent of time	d) None of these
656. A partic	e moves along X	- axis in such a way that its	coordinate X varies with t	ime t according to the
equation	x = (2 - 5t + 6t)	$6t^2)m$. The initial velocity $6t^2$	of the particle is	
a) −5 m	/s	b) 6 m/s	c) $-3 m/s$	d) 3 m/s
657. Three pa	articles start from	m the origin at the same tin	ne, one with a velocity $v_{\mathtt{1}}$ a	long x -axis, the second along
the y-ax	is with a velocity	v_2 and the third along $x =$	y line. The velocity of the	third so that the three may
always l	ie on the same li	ne is		
a) $\frac{v_1 v_2}{v_1 + v_2}$	<u> 8</u>	b) $\frac{\sqrt{2}v_1v_2}{v_1+v_2}$	$\sqrt{3}v_1v_2$	d) Zero
$v_1 + v_2 + v_3 + v_4 + v_5 $	22	$\frac{v_1+v_2}{v_1+v_2}$	$\overline{v_1 + v_2}$	
658. A persoi	going towards	east in a car with a velocity	of 25kmh ⁻¹ , a train appea	ers to move towards north
with a v	elocity of $25\sqrt{3}$ k	mh ⁻¹ . The actual velocity	of the train will be	
a) 25 kn	1h ⁻¹	b) 50 kmh ⁻¹	c) 5 kmh ⁻¹	d) 35 kmh ⁻¹
659. A car mo	ving with speed	of $40 km/h$ can be stoppe	d by applying brakes after	atleast $2 m$. If the same car is
moving	with a speed of 8	30 km/h, what is the minim	num stopping distance	
a) 8 m	\$B\$	b) 2 m	c) 4 m	d) 6 m
660. A 120 m	long train is mo	ving in a direction with spe	eed $20 m/s$. A train B movi	ng with $30 m/s$ in the
opposite	direction and 1	30 m long crosses the first	train in a time	
a) 6 s		b) 36 s	c) 38 s	d) None of these
661. From th	e top of tower a	body A is projected vertica	lly up, another body B is he	orizontally thrown and a
third bo	$\mathrm{dy}\mathit{C}$ is thrown v	ertically down with same v	elocity. Then	
a) <i>B</i> stri	kes the ground v	with more velocity		
b) C stri	kes the ground v	vith less velocity		
		nd with same velocity		
7.7	100	und with more velocity tha		
		art moving simultaneously	[NS	
				hen A overtakes B at C then
	Magazin and an analysis and an area and an area.	he velocity of B at C will lbe		
a) 5ms		b) 10ms ⁻¹	c) 15ms ⁻¹	d) 20ms ⁻¹
				0 kmh ⁻¹ and the second half
		e speed is 40 kmh ⁻¹ , the va		
a) 30 kn		b) 13 kmh ⁻¹		
		n ahead of it and gains 3m	in 5s after the chase began	. The distance gained by the
tiger in 1	LO S IS	1) 40	2.40	D 22
a) 6m		b) 12 m	c) 18 m	d) 20 m
122		instant acceleration and v_1		10700
		and t_3 of time. Which of th		
a) $\frac{v_1}{v_2}$	$\frac{r_2}{r_2} = \frac{\epsilon_1}{t} \frac{\epsilon_2}{t}$	b) $\frac{v_1 - v_2}{v_2 - v_3} = \frac{t_1 - t_2}{t_1 - t_3}$	c) $\frac{v_1}{v_2} = \frac{v_1}{t_2} = \frac{v_2}{t_1 - t_2}$	d) $\frac{v_1}{v_1} = \frac{v_2}{v_1} = \frac{v_1 + v_2}{v_1 + v_2}$
	사람 - 10개 명 2개()			ying due South a little above
		/s. The time taken by the b	ngal - 1985 safa matus masa masa sa sa sa manana manana mana ana ana ana ana ana	ying due south a little above
a) 6s	with speed 5 m	b) 7s	c) 9s	d) 10s
	tarting from res	t moves with constant acce		
950		covered in 5 sec is	retation. The ratio of dista	nee covered by the body
a) 9/15	ic 5 Sec to that	b) 3/5	c) 25/9	d) 1/25
	e moves a distar		30 m () () () () () () () () () (he acceleration of particle is
proporti		v according to		service and or particle is
a) (Velo		b) (Velocity) ^{3/2}	c) (distance) ²	d) (distance) ⁻²
۵) (۲۵۱۵		-) (. 5.36.1)	-, (

CLICK HERE >>>

- 669. A ball is thrown straight upward with a speed v from a height h above the ground. The time taken for the ball to strike the ground is given by
 - a) $-h = vt \frac{1}{2}gt^2$ b) $h = vt \frac{1}{2}gt^2$ c) $\frac{1}{2}gt^2$

- 670. A car moves a distance of 200 m. It covers first half of the distance at speed 60 kmh⁻¹ and the second half at speed v. If the average speed is 40 kmh^{-1} , the value of v is
 - a) $30 \, kmh^{-1}$
- b) $13 \, kmh^{-1}$
- c) $60 \, kmh^{-1}$
- d) $40 \, kmh^{-1}$

671. Which graph represents a state of rest for an object

- 672. The given graph shows the variation of velocity with displacement. Which one of the graph given below correctly represents the variation of acceleration with displacement

- 673. With what velocity a ball be projected vertically so that the distance covered by it in 5th second is twice the distance it covers in its 6th second ($g = 10 \text{ m/s}^2$)
 - a) $58.8 \, m/s$
- b) $49 \, m/s$
- c) $65 \, m/s$
- d) 19.6 m/s
- 674. A body, thrown upwards with some velocity reaches the maximum height of 50 m. Another body with the double the mass thrown up with double the initial velocity will reach a maximum height of
 - a) 100 m
- b) 200 m
- c) 300 m

675. Two particles held at diff	ferent heights a and b above	e the ground are allowed to	o fall from rest. The ratio of
their velocities on reachi			
a) $a:b$		c) $a^2:b^2$	d) $a^3:b^3$
676. A body starts from rest a	(10 2 / V 1 (10 (1 X (10)	cceleration. The ratio of di	stance covered in the <i>n</i> th
second to the distance co			
a) $\frac{2}{n} - \frac{1}{n^2}$	b) $\frac{1}{n^2} - \frac{1}{n}$	2 1	$\frac{2}{1}$ $\frac{1}{1}$
16 16	16 16	11 11	
677. The initial and final po	· · · · · · · · · · · · · · · · · · ·		$(0 \text{ m})\hat{\mathbf{i}} + (2.0 \text{ m})\hat{\mathbf{j}} + (8.0 \text{ m})\hat{\mathbf{k}}$
	+ $(-8.0 \text{ m})\hat{\mathbf{k}}$.The displacem	7	
a) $(6.0 \text{ m})\hat{\mathbf{i}} + (4.0 \text{ m})\hat{\mathbf{j}} +$	(27)	b) (6.0 m)î	
c) $(12.0 \text{ m})\hat{\mathbf{i}} - (16.0 \text{ m})\hat{\mathbf{j}}$		d) (12.0 m)î	1 1
678. What is the relation betw	veen displacement, time and	d acceleration in case of a b	ody having uniform
acceleration 1			d) None of these
a) $S = ut + \frac{1}{2}ft^2$	b) S = (u + f) t	c) $S = v^2 - 2fs$	d) None of these
679. A body is thrown vertica			C in its upward journey
12. 20.			ints A and B and between B
and C i. e., $\frac{AB}{BC}$ is			
	b) 2	10	20
a) 1	b) 2	c) $\frac{10}{7}$	d) $\frac{20}{7}$
680. A ball is dropped from to	p of a tower of 100m heigh	t. Simultaneously another	ball was thrown upward
10.770.77.	r with a speed of $50 m/s$ (g	Page 4	
a) 1s	b) 2s	c) 3s	d) 4s
681. A body moves for a total			
	ch is twice the value of acce	eleration and then stops. The	ne duration of uniform
acceleration	****	w ==:	13.
a) 3 s	b) 4.5 s	c) 5 s	d) 6 s
682. A point initially at rest m		eration varies with time as	a = (6t + 5) in ms *. It
starts from origin, the dis	b) 3.5 m	c) 4 m	d) 4.5 m
683. A train is moving toward	250	(A)	
car to the passenger in th		tii, botii witii saine speedi	The observed direction of
a) East- north direction	b) West-north direction	c) South-east direction	d) None of these
684. A student is standing at a	할겠다면서 그렇게 하는 아이들의 직원들이 되었다면 하는 아이들은 사람들이 되었다.		The second secon
acceleration of $1 ms^{-2}$, the	he student starts running to	owards the bus with a unifo	orm velocity u . Assuming the
motion to be along a stra	ight road, the minimum val	ue of <i>u</i> , so that the student	is able to catch the bus is
a) $52 ms^{-1}$	b) $8 ms^{-1}$	c) $10 ms^{-1}$	d) $12 ms^{-1}$
685. Two balls A and B of sam		the top of the building. A, t	hrown upward with velocity
V and B, thrown downwa	para territoria de la constitución		
a) Velocity of A is more t			
b) Velocity of B is more t	7.1		
d) None of these	ground with same velocity		
686. The position of a particle	moving along y-ayis at cert	tain times is given helow	
t(s) 0 1	2 3	tain times is given below.	
x(m) -2 0	6 16		
	escribes the motion correct	ly	
a) Uniform accelerated		b) Uniform decelerated	
c) Non-uniform accelera	ted	d) There is not enough da	ata for generalization

	587. The position of a particle x (in metres) at a time t seconds is given by the relation $\vec{r} = (3t\hat{\imath} - t^2\hat{\jmath} + 4\hat{k})$.			
	en an amhaig agus an gaile an	f velocity of the particle aft		2000
) 3.55	b) 5.03	c) 8.75	d) 10.44
			20	st second. The value of h is
- 4 VIVOTE - 12 S. 15) 145 m	b) 100 m	c) 122.5 m	d) 200 m
			ity after penetrating 3 cm.	
			es constant resistance to mo	
) 1.5 cm	b) 1.0 cm	c) 3.0 cm	d) 2.0 cm
		•	ly downwards with a veloc nds of the motion is (Take &	35
a)) 5 : 7	b) 7:5	c) 3:6	d) 6:3
691. T	'wo trains one of $100m$ a	and another of length 125m	n, are moving in mutually o	pposite directions along
		ther, each with speed 10m	D);	
If	f their acceleration are 0.	$3m/s^2$ and $0.2m/s^2$ respect	tively, then the time taken t	o pass each other will be
) 5 <i>s</i>	b) 10 s	c) 15 s	d) 20 s
	아마이 사용 아마 바다 바다 아마 아마 없었다. 아마	보이 있는 것이 있는 사람이 아니면 보면 보다 보다 없었다. 그리고 있다면 하는 것이 있는 것이다. 보다 보다 보다 보다 보다 없다.	vfrom the top of tower of h	~ 1 Pro 1 = 10 10 10 10 10 10 10 10 10 10 10 10 10
gı	round a distance of 250 r	n from the foot of the towe	er. A body of mass, 2 m thro	own horizontally with
V	elocity $\frac{v}{2}$, from the top of	tower of height 4 h will tou	ach the level ground at a dis	stance x from the foot of
to	ower. The value of x is			
a)) 250 m	b) 500 m	c) 125 m	d) 250√2m
693. A	balloon is at a height of	81m and is ascending upwa	ards with a velocity of 12m	
			h the surface of the earth in	
) 1.5 s	b) 4.025 s	c) 5.4 s	d) 6.75 s
		rom the earth's surface suc	h that it creates an accelera	ation of 19.6 m/\sec^2 . If
	difference of the second second between the second		neight of the rocket from ea	10 120 NG 120 20 20 20 20 20 20 20 20 20 20 20 20 2
) 245 m	b) 490 m	c) 980 m	d) 735 m
695. T	wo trains travelling on th	ne same track are approach	ning each other with equal	speeds of $40m/s$. The
d	rivers of the trains begin	to decelerate simultaneou	sly when they are just $2.0k$	m apart. Assuming the
d	lecelerations to be unifor	m and equal, the value of tl	he deceleration to barely av	oid collision should be
a)) $11.8 m/s^2$	b) $11.0 \ m/s^2$	c) $2.1 m/s^2$	d) $0.8 m/s^2$
696. T	wo bodies of different m	asses m_a and m_b are drop	ped from two different heig	ghts a and b . The ratio of
th	he time taken by the two	to cover these distances ar	re	
a)) a : b	b) <i>b</i> : <i>a</i>	c) $\sqrt{a}:\sqrt{b}$	d) $a^2 : b^2$
697. T	he speed of body moving	g with uniform acceleration	is u .This speed is doubled	while covering distance S,
it	ts speed would be becom	e		
a	$)\sqrt{3}u$	b) $\sqrt{5}u$	c) $\sqrt{11}u$	d) $\sqrt{7}u$
698. A	body starts to fall freely	under gravity. The distance	e covered by it in first, seco	ond and third second are in
ra	atio			
1.3) 1:3:5	b) 1:2:3	c) 1:4:9	d) 1:5:6
	The position x of a particle time t equal to	e varies with time t as $x =$	$at^2 - bt^3$. The acceleration	n of the particle will be zero
		, 2a	_ a	1) 7
a	$\frac{a}{b}$	b) $\frac{2a}{3b}$	c) $\frac{a}{3b}$	d) Zero
700. A	particle moves along X-	axis in such a way that its o	coordinate X varies with tin	ne t according to the
e	quation x = (2 - 5t + 6t)	(2)m. The initial velocity of	the particle is	
a)) -5 m/s	b) 6 m/s	c) $-3 m/s$	d) 3 m/s
701. A	an object is projected upw	vards with a velocity of 100	0m/s. It will strike the grou	nd after (approximately)
a)) 10 sec	b) 20 sec	c) 15 sec	d) 5 sec

702. A ball is dropped fro	m top of a tower of 100n	n height. Simultaneously anot	her ball was thrown upward
from bottom of the t	ower with a speed of 50	m/s ($g = 10 m/s^2$). They wi	ll cross each other after
a) 1s	b) 2s	c) 3s	d) 4s
703. If a ball is thrown ve	rtically upwards with sp	eed u , the distance covered d	uring the last t seconds of its
ascent is			
a) $\frac{1}{2}gt^2$	b) $ut - \frac{1}{2}at^2$	c) $(u-gt)t$	d) ut
4	4		
		decreases by half after penetr	ation 30 cm into it. The
	it will penetrate before	(T)	13.50
a) 30 cm	b) 40 cm	c) 10 cm	d) 50 cm
	경기를 입하는 그만 하늘 () '프라이라는 그런 것이라면 없는 것이라면 하나 없었다.	그리고 그래 가는 것이 되는 것이 되었다. 그 그리고 그 없는 것이 없는 것이 없는 것이 없는 것이다.	el with a speed $10 m/s$. After $1 s$,
		om the same position with a s vel at that moment? (Take g =	
a) $10 m$	b) 1 <i>m</i>	c) $2 m$	d) 5 m
	•	*	vn up from the ground which
	The two stones cross of		vii up iroin the ground which
_	The two stones cross of	ner area time	<u></u>
a) $\sqrt{\frac{h}{8g}}$	b) $\sqrt{8gh}$	c) $\sqrt{2gh}$	d) $\frac{h}{2g}$
$\sqrt{8g}$, , ,	, , ,	$\sqrt{2g}$
707. The displacement of	a particle is proportiona	l to the cube of time elapsed.	How does the acceleration of the
particle depends on			
a) $a \propto t^2$		c) a∝ <i>t</i> ³	517 M 555
		nd a distance equal to the dis	tance travelled by it in the first
three second, the tim			
a) 6 <i>sec</i>	b) 5 sec	c) 4 sec	d) 3 sec
	nitial velocity 10 ms ⁻¹ . I	f it covers a distance of $20m$ i	n $2s$, then acceleration of the
body is	1) 40 =2) F -2	d) $2ms^{-2}$
a) Zero		c) 5ms ⁻²	
710. A body sliding on a smooth inclined plane required 4s to reach the bottom, starting from rest at the top. How much time does it takes to cover one-fourth the distance starting from rest at top?			
a) 1 s		c) 4 s	d) 16 s
711. Select the incorrect s	b) 2 s		u) 10 s
S1 : Average velocity is path length divided by time interval			
S2 : In general, speed is greater than the magnitude of the velocity			
S3 : A particle moving in a given direction with a non-zero velocity can have zero speed			
	of average velocity is the	10720	P
a) S2 and S3	b) S1 and S4	c) S1, S3 and S4	d) All four statements
712. A stone thrown verti	cally upwards attains a	maximum height of 45m. In w	hat time the velocity of stone
become equal to one	-half the velocity of thro	$w? (Given g = 10ms^{-2})$	
a) 2 s	b) 1.5 s	c) 1 s	d) 0.5 s
713. A bullet emerge from	n a barrel of length 1.2 m	with a speed of 640 ms^{-1} . A	ssuming constant acceleration,
the approximate tim	e that is spends in the ba	arrel after the gun is fired is	
a) 4 ms	b) 40 ms	c) 400 µs	d) 1 s
		rosses a distance of 65 m in t	he 5th second and 105 m in 9th
second. How far will		10-14-1 (10-1-10-10-10-10-10-10-10-10-10-10-10-10	
a) 2040 m	b) 240 m	c) 2400 m	d) 2004 m
715. A balloon starts rising from the ground with an acceleration of 1.25 m/s^2 after 8s, a stone is released from			
the balloon. The stone will $(g - 10 m/s^2)$			
a) Reach the ground in 4 second b) Begin to move down after being released			
b) Begin to move do	wn after being released		

CLICK HERE >>>

- c) Have a displacement of 50 m
- d) Cover a distance of 40 m in reaching the ground
- 716. Which of the following are true?
 - (i) A body having constant speed can have verying velocity.
 - (ii) Position-time graphs for two objects with zero relative velocity are parallel.
 - (iii) The numerical ration of velocity to speed of an object can never be more than one.
 - a) (i)

- b) (ii) and (iii)
- c) All

- d) None of these
- 717. The v-t graph for a particle is as shown. The distance travelled in the first four second is

- a) 12 m
- b) 16 m
- c) 20 m
- d) 24 m
- 718. A body starts from rest and moves with uniform acceleration. Which of the following graphs represents it motion?

719. Which of the following options is correct for the object having a straight line motion represented by the following graph

- The object moves with constantly increasing velocity from O to A and then it moves with constant velocity
- b) Velocity of the object increases uniformly
- c) Average velocity is zero
- d) The graph shown is impossible
- 720. A boy standing at the top of a tower of 20 m height drops a stone. Assuming $g = 10 \, ms^{-2}$, the velocity with which it hits the ground is
 - a) $5.0 \, m/s$
- b) 10.0 m/s
- c) $20.0 \, m/s$
- d) $40.0 \, m/s$
- 721. A particle starts from rest. Its acceleration (a) versus time (t) is as shown in the figure. The maximum speed of the particle will be

- a) $110 \, m/s$
- b) $55 \, m/s$
- c) $550 \, m/s$
- d) $660 \, m/s$
- 722. The distance-time graph of a particle at time t makes angle 45° with time axis. After 1s, it makes angle 60° with time axis. What is the acceleration of the particle?

- a) $\sqrt{3} 1$ unit
- b) $\sqrt{3} + 1$ unit
- c) $\sqrt{3}$ unit
- d) 1 unit
- 723. A man throws balls with the same speed vertically upwards one after the other at an interval of two seconds. What should be the speed of the throw so that more than two balls are in the sky at any time (Given $g = 9.8 \, m/s^2$)
 - a) At least 0.8 m/s

b) Any speed less than $19.6 \, m/s$

c) Only with speed 19.6 m/s

- d) More than 19.6
- 724. A 2 m wide truck is moving with a uniform speed $v_0 = 8 \text{ms}^{-1}$ along a straight horizontal road. A pedestrian starts to cross the road with a uniform speed v when the truck is 4m away from him. The minimum value of v, so that he can cross the raod safely is
 - a) 2.62ms^{-1}
- b) 4.6ms^{-1}
- c) 3.57ms^{-1}
- 725. A man is 45 m behind the bus when the bus start accelerating from rest with acceleration 2.5 m/s^2 . With what minimum velocity should the man start running to catch the bus
- b) $14 \, m/s$
- c) 15 m/s
- d) 16 m/s
- 726. The acceleration of a train between two stations 2 km apart is shown in the figure. The maximum speed of the train is

- a) 60ms^{-1}
- b) 30 ms^{-1}
- c) 120 ms^{-1}
- d) 90 ms^{-1}
- 727. A particle moves along the sides AB, BC, CD of a square of side 25 m with a velocity of 15 ms^{-1} . Its average velocity is

- a) $15 \, ms^{-1}$
- b) $10ms^{-1}$
- c) $7.5ms^{-1}$
- d) $5ms^{-1}$
- 728. A body is released from the top of a tower of height h. It takes t sec to reach the ground. Where will be the ball after time t/2 sec
 - a) At h/2 from the ground

- b) At h/4 from the ground
- c) Depends upon mass and volume of the body
- d) At 3h/4 from the ground

- 729. A steamer taken 12 days to reach from part x to part y. Every day only one steamer sets out from both the ports. How many steamers does each steamer meet in the open sea?
 - a) 23

- d) 21.
- 730. A train accelerates from rest at a constant rate α for distance x_1 and time t_1 . After that it retards to rest at constant rate β for distance x_2 and time t_2 . Then it is found that
- $b)\frac{x_1}{x_2} = \frac{\beta}{\alpha} = \frac{t_1}{t_2}$
- c) $\frac{x_1}{x_2} = \frac{\beta}{\alpha} = \frac{t_2}{t_1}$ d) $\frac{x_1}{x_2} = \frac{\beta}{\alpha} = \frac{t_2}{t_1}$
- 731. A stone is thrown with an initial speed of $4.9 \, m/s$ from a bridge in vertically upward direction. It falls down in water after 2 sec. The height of the bridge is
 - a) 4.9 m
- b) 9.8 m
- c) 19.8 m
- d) 24.7 m
- 732. A body is released from a great height and falls freely towards the earth. Another body is released from the same height exactly one second later. The separation between the two bodies, two seconds after the release of the second body is
 - a) 4.9 m
- b) 9.8 m
- c) 19.6 m
- d) 24.5 m

- 733. Which of the following is a one dimensional motion
 - a) Landing of an aircraft

- b) Earth revolving around the sun
- c) Motion of wheels of moving train
- d) Train running on a straight track
- 734. The velocity-time graph of a body is shown in figure. The ratio of the ... during the intervals OA and AB is....

- a) Average velocities:2
- b) $\frac{OA}{AB}$: $\frac{1}{3}$
- c) Average accelerations, same as distance covered
- d) Distance covered: $\frac{1}{2}$
- 735. A particle starts from rest at t = 0 and moves in a straight line with an acceleration as shown below. The velocity of the particle at t = 3s is

- a) $2 ms^{-1}$
- b) $4 ms^{-1}$
- c) $6 \, ms^{-1}$
- d) $8 \, ms^{-1}$
- 736. The position coordinates of a particle moving in X Y as a function of time t are

$$x = 2t^2 + 6t + 25$$

$$y = t^2 + 2t + 1$$

- The speed of the object at t = 10 s is approximately

c) 71

- 737. A ball is thrown vertically upwards from the top of a tower at 4.9ms⁻¹. It strikes the pond near the base of the tower after 3s. The height of the tower is
 - a) 29.4m
- b) 44.1m
- c) 73.5m
- d) 490m
- 738. A body starting from rest, accelerates at a constant rate a m/s^2 for some time after which it decelerates at a constant rate $b m/s^2$ to come to rest finally. If the total time elapsed is t sec, the maximum velocity attained by the body is given by

- a) $\frac{ab}{a+b}t \, m/s$ b) $\frac{ab}{a-b}t \, m/s$ c) $\frac{2ab}{a+b}t \, m/s$ d) $\frac{2ab}{a-b}t \, m/s$

- 739. A police jeep is chasing with velocity of $45 \, km/h$ a thief in another jeep moving with velocity $153 \, km/h$. Police fires a bullet with muzzle velocity of $180 \, m/s$. The velocity with which it will strike the car of the thief is
 - a) $150 \, m/s$
- b) $27 \, m/s$
- c) 450 m/s
- d) 250 m/s
- 740. The acceleration a of a particle starting from rest varies with time according to relation $a = \alpha t + \beta$. The velocity of the particle after a time t will be
 - a) $\frac{\alpha t^2}{2} + \beta$
- b) $\frac{\alpha t^2}{2} + \beta t$
- c) $\alpha t^2 + \frac{1}{2}\beta t$
- d) $\frac{(\alpha t^2 + \beta t)}{2}$
- 741. The velocity of a bullet is reduced from 200 *m/s* to 100 *m/s* while travelling through a wooden block of thickness 10 *cm*. The retardation, assuming it to be uniform, will be
 - a) $10 \times 10^4 \ m/s^2$
- b) $12 \times 10^4 \, m/s^2$
- c) $13.5 \times 10^4 \, m/s^2$
- d) $15 \times 10^4 \, m/s^2$
- 742. A car starts from rest and moves with uniform acceleration a on a straight road from time t=0 to t=T. After that, a constant deceleration brings it to rest. In this process the average speed of the car is
 - a) $\frac{aT}{4}$

- b) $\frac{3aT}{2}$
- c) $\frac{aT}{2}$

- d) aT
- 743. A particle located at x=0 at time t=0, starts moving along the positive x —direction with a velocity v that varies as $v=\alpha\sqrt{x}$. The displacement of the particle varies with time as
 - a) t^2

b) t

c) $t^{1/2}$

- d) t^3
- 744. Acceleration-time graph of a body is shown. The corresponding velocity-time graph of the same body is

- 745. If the velocity of a car is increased by 20%, then the minimum distance in which it can be stopped increase by
 - a) 44%
- b) 55%
- c) 66%
- d) 88%
- 746. If the velocity of particle is given by $v = (180 16x)^{1/2} m/s$, then its acceleration will be
 - a) Zero
- b) $8 m/s^2$
- c) $-8 \, m/s^2$
- d) $4 m/s^2$
- 747. A graph is drawn between velocity and time for the motion of a particle. The area under the curve between the time intervals t_1 and t_2 gives
 - a) Momentum of the particle

b) Displacement of the particle

c) Acceleration of the particle

- d) Change in velocity of the particle
- 748. The relation between time and distance is $t = \alpha x^2 + \beta x$, where α and β are constants. The retardation is
 - a) $2\alpha v^3$
- b) $2\beta v^3$
- c) $2\alpha\beta v^3$
- d) $2\beta^2 v^3$
- 749. An aeroplane files around a square field ABCD of each side 1000 km. Its speed along AB is 250 km h^{-1} , along DA 100 km h^{-1} . Its average speed (in km h^{-1}) over the entire trip is
 - a) 225.5
- b) 175.5
- c) 125.5
- d) 190.5
- 750. A ball is dropped on a floor and bounces back to a height somewhat less than the original height, which of the curves depicts its motion correctly?

- 751. A body is thrown vertically upwards with velocity u. The distance travelled by it in the fifth and the sixth seconds are equal. The velocity u is given by $(g = 9.8 \text{ ms}^{-2})$
 - a) 24.5 ms^{-1}
- b) 49.0 ms^{-1}
- c) 73.5 ms⁻¹
- d) 98.0 ms^{-1}
- 752. A car accelerates from rest at a constant rate a for some time, after which it decelerates at a constant rate β and comes to rest. If the total time elapsed is t, then the maximum velocity acquired by the car is

a)
$$\left(\frac{\alpha t + \beta^2}{a\beta}\right) t$$

b)
$$\left(\frac{\alpha^2 - \beta^2}{a\beta}\right)t$$

c)
$$\frac{(\alpha + \beta)t}{\alpha\beta}$$

d)
$$\frac{\alpha\beta t}{\alpha + \beta}$$

753. The x - t graph shown in the figure represents

- a) Constant velocity
- b) Velocity of the body is continuously changing
- c) Instantaneous velocity
- d) The body travels with constant speed upto time t_1 and then stops
- 754. The acceleration of a particle increasing linearly with time t is bt. The particle starts from the origin with an initial velocity v_0 . The distance travelled by the particle in time t will be

a)
$$v_0 t + \frac{1}{6} b t^3$$

b)
$$v_0 t + \frac{1}{3} b t^2$$

c)
$$v_0 t + \frac{1}{3} b t^3$$

d)
$$v_0 t + \frac{1}{3} b t^2$$

755. A particle is moving with constant acceleration from A to B in a straight line AB. If u and v are the velocities at A and B respectively then its velocity at the midpoint C will be

a)
$$\left(\frac{u^2+v^2}{2u}\right)^2$$

b)
$$\frac{u+v}{2}$$

c)
$$\frac{v-u}{2}$$

$$d)\sqrt{\frac{u^2+v^2}{2}}$$

- 756. A particle is constrained to move on a straight line path. It returns to the starting point after 10 *sec*. The total distance covered by the particle during this time is 30 *m*. Which of the following statement about the motion of the particle is false
 - a) Displacement of the particle is zero
- b) Average speed of the particle is 3 m/s
- c) Displacement of the particle is $30\ m$
- d) Both (a) and (b)

- 757. Two bodies are thrown vertically upwards with their initial speed in the ratio 2: 3. The ratio of the maximum heights reached by then and the ratio of their time taken by them to return back to the ground respectively are
 - a) 4:9 and 2:3
- b) 2 : 3 and $\sqrt{2}$: $\sqrt{3}$
- c) $\sqrt{2}$: $\sqrt{3}$ and 4: 9
- d) $\sqrt{2}$: $\sqrt{3}$ and 2: 3
- 758. Two balls are dropped to the ground from different heights. One ball is dropped 2s after the other but they both strike the ground at the same time. If the first ball takes 5s to reach the ground, then the difference in initial heights is $(g = 10 ms^{-2})$

- d) 40m

759. The displacement of particle is given by $x = a_0 + \frac{a_1 t}{2} - \frac{a_2 t^2}{3}$

What is its acceleration?

- c) a_2

- d) Zero
- 760. A bullet emerges from a barrel of length 1.2 m with a speed of 640 ms⁻¹. Assuming constant acceleration, the approximate time that it spends in the barrel after the gun is fired is
 - a) 4 ms
- b) 40 ms
- c) 400 µs
- d) 1 s
- 761. An aeroplane is flying horizontally with a velocity of 600 kmh⁻¹ and at a height of 1960 m. When it is vertically above a point A on the ground a bomb is released from it. The bomb strikes the ground at point B. The distance AB is
 - a) 1200 m
- b) 0.33 km
- c) 333.3 km
- d) 3.33 km

- 762. The area under acceleration-time graph gives
 - a) Distance in travelled

b) Change in acceleration

c) Force acting

- d) Change in velocity
- 763. The area under acceleration-time graph gives
 - a) Distance travelled

b) Change in acceleration

c) Force acting

- d) Change in velocity
- 764. A police car is travelling in a straight line with a constant speed v. A truck travelling in the same direction with constant velocity 3v/2 passes, the police car at t = 0. The police car starts acceleration 10 s after passing the truck, at a constant rate of 3 ms⁻², while truck continues to move at constant speed. If he police car takes 10 s further to catch the truck, find the value of v
 - a) 10 ms^{-1}
- b) 15 ms^{-1}
- c) 20 ms^{-1}
- d) 30 ms^{-1}
- 765. A boy walks to his school at a distance of 6km with constant speed of 2.5 km/hour and walks back with a constant speed of $4 \, km/hr$. His average speed for round trip expressed in km/hour, is
 - a) 24/13
- b) 40/13

- 766. An aircraft is flying at a height of 34000m above the ground. If the angle subtended at a ground observation point by the aircraft positions 10s apart is 30°, then the speed of the aircraft is
 - a) $19.63ms^{-1}$
- b) $1963 \, ms^{-1}$
- c) $108 \, ms^{-1}$
- d) $196.3 \ ms^{-1}$
- 767. In the following graph, distance travelled by the body in meters is

- a) 200
- b) 250
- c) 300
- d) 400
- 768. The engine of motorcycle can produce a maximum acceleration $5 m/s^2$. Its brakes can produce a maximum retardation $10 m/s^2$. What is the minimum time in which it can over a distance of 1.5 km

a) 30 sec	b) 15 sec	c) 10 sec	d) 5 sec
769. A body A starts from	rest with an acceleration a_1 .	After 2 seconds, another	r body B starts from rest with an
acceleration a_2 . If the	y travel equal distances in th	e 5th second, after the s	tart of A, then the ration a_1 : a_2 is
equal to		2 - 2	
a) 5 : 9	b) 5 : 7		d) 9:7
	e is $v = v_0 + gt + ft^2$. If its po	sition is $x = 0$ at $t = 0$, t	hen its displacement after unit
time $(t=1)$ is			
a) $v_0 + 2g + 3f$	b) $v_0 + g/2 + f/3$	c) $v_0 + g + f$	d) $v_0 + g/2 + f$
(T)	7.5	7.	beed along AB is 250 $km h^{-1}$,
	. Its average speed (in km h		
a) 225.5	b) 175.5	c) 125.5	d) 190.5
			ped from it and it reaches the ped from it is ($g = 9.8 ms^{-2}$)
a) 100 m	b) 200 <i>m</i>	c) $400 m$	d) 150 m
V		- 15	n, it retards at a constant rate of
			3s, what is the total distance
travelled?			
a) 2m	b) 3m	c) 4m	d) 6m
	97.	The time taken by it to f	fall through successive distances
of 1 m each will then			
a) All equal, being eq		12 21	
	square roots of the integers 1		5 5 5 5 5 C
c) In the ratio of the o	difference in the square roots	of the integers i.e. $\sqrt{1}$, ($\sqrt{2} - \sqrt{1}$, $(\sqrt{3} - \sqrt{2})$, $(\sqrt{4} - \sqrt{2})$
√3)			
d) In the ratio of the i	reciprocal of the square roots	of the integers i.e., $\frac{1}{\sqrt{1}}$,	$\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{4}}$
			$f 3 m s^{-1}$. The other half of the
		h speeds of 4.5ms ⁻¹ and	l 7.5ms ⁻¹ . The average speed of
the particle during th		\ e = _1	n 40 =1
a) 4ms ⁻¹		c) 5.5 ms ⁻¹	
proportional to	rest moves with uniform acco	eleration. The distance of	covered by the body in time t is
a) \sqrt{t}	b) $t^{3/2}$	c) t ²	d) t^3
	ng at the ends A and B of a gro	,	
			g simultaneously with velocity v
	boy in a time t , when t is		
a) $\frac{a}{\sqrt{(v^2 + v_1^2)}}$	b) $\sqrt{a^2/(v^2-v_1^2)}$	a = a + (n - n)	d) = f(n + n)
a) $\sqrt{(v^2+v_1^2)}$	b) $\sqrt{a^2/(v^2-v_1^2)}$	c) $a / (v - v_1)$	$d \int d \int (v + v_1)$
			est and from the same point 'O'
	frictionless paths. The speeds	s of the three objects, on	reaching the ground, will be in
the ratio of			1 1 1
a) $m_1: m_2: m_3$	b) $m_1: 2m_2: 3m_3$	c) 1:1:1	d) $\frac{1}{m_1}:\frac{1}{m_2}:\frac{1}{m_2}$
779. A train is moving slow	wly on a straight track with a	constant speed of 2 ms	123
	0.70		pposite direction of the motion
			that passenger. The velocity of
the passenger appear	rs to be		
a) $4 ms^{-1}$		b) $2 ms^{-1}$	
c) $2 ms^{-1}$ in the opposition	osite direction of the train	d) Zero	

- 780. A bird files for 4s with a velocity of $|t-2| \text{ms}^{-1}$ in a straight line, where t=time in second. It covers a distance of
 - a) 8 m

b) 6 m

c) 4 m

- d) 2 m
- 781. A particle moving with a uniform acceleration along a straight line covers distance a and b in successive intervals of p and q second. The acceleration of the particle is
 - a) $\frac{pq(p+q)}{2(bp-aq)}$
- b) $\frac{2(aq bp)}{pq(p q)}$
- c) $\frac{bp aq}{pq(p q)}$
- d) $\frac{2(bp aq)}{pq(p q)}$
- 782. The motion of a particle is described by the equation u=at. The distance travelled by the particle in the first 4 seconds
 - a) 4a

- b) 12a
- c) 6a

- d) 8a
- 783. Equation of displacement for any particle is $s = 3t^3 + 7t^2 + 14t + 8m$. Its acceleration at time t = 1 sec is
 - a) $10 \, m/s^2$
- b) $16 \, m/s^2$
- c) $25 \, m/s^2$
- d) $32 \, m/s^2$
- 784. A body is travelling in a straight line with a uniformly increasing speed. Which one of the plot represents the changes in distance (s) travelled with time (t)

- 785. For a body moving with relativistic speed, if the velocity is doubled, then
 - a) Its linear momentum is doubled
 - b) Its linear momentum will be less than double
 - c) Its linear momentum will be more than double
 - d) Its linear momentum remains unchanged
- 786. A body moves with initial velocity $10\ ms^{-1}$. If it covers a distance of 20m in 2s, then acceleration of the body is
 - a) Zero
- b) $10ms^{-2}$
- c) $5ms^{-2}$
- d) $2ms^{-2}$
- 787. A car starts from rest and accelerates uniformly to a speed of $180 \ kmh^{-1}$ in $10 \ seconds$. The distance covered by the car in this time interval is
 - a) 500 m
- b) 250 m
- c) 100 m
- d) 200 m
- 788. A body projected vertically upwards with velocity u returns to the starting point in 4 seconds. If $g = 10 m/\sec^2$, the value of u is
 - a) 5 m/sec
- b) 10 m/sec
- c) 15 m/sec
- d) 20 m/sec
- 789. The velocity-time and acceleration-time graphs of a particle are given as

Its position-time graph may be given as

- 790. What determines the nature of the path followed by the particle
 - a) Speed
- b) Velocity
- c) Acceleration
- d) Both (b) and (c)
- 791. A particle covers 4m, 5m, 6m, and 7m, in 3rd, 4th, 5th and 6th second respectively. The particle starts
 - a) With an initial non-zero velocity and moves with uniform acceleration
 - b) From rest and moves with uniform velocity

- c) With an initial velocity and moves with uniform velocity
- d) From rest and moves with uniform acceleration
- 792. The acceleration 'a' in m/s^2 of a particle is given by $a = 3t^2 + 2t + 2$ where t is the time. If the particle starts out with a velocity u = 2m/s at t = 0, then the velocity at the end of 2 seconds is
 - a) 12 m/s
- b) $18 \, m/s$
- c) 27 m/s
- 793. A 150 m long train is moving with a uniform velocity of 45 km/h. The time taken by the train to cross a bridge of length 850 m is
 - a) 56 sec
- b) 68 sec
- c) 80 sec
- d) 92 sec
- 794. For the velocity-time graph shown in figure below the distance covered by the body in last two seconds of its motion is what fraction of the total distance covered by it in all the seven seconds

a) $\frac{1}{2}$

- 795. A body of mass 10 kg is moving with a constant velocity of 10 m/s. When a constant force acts for 4 seconds on it, it moves with a velocity 2 m/sec in the opposite direction. The acceleration produced in it is
 - a) $3m/\sec^2$
- b) $-3m/\sec^2$
- c) $0.3m/\sec^2$
- d) $-0.3m/\sec^2$
- 796. A body starting from rest moves with constant acceleration. The ratio of distance covered by the body during the 5th second to that covered in 5s is
 - a) $\frac{9}{25}$

c) $\frac{25}{5}$

- 797. Which of the following is a one dimensional motion
 - a) Landing of an aircraft

- b) Earth revolving around the sun
- c) Motion of wheels of moving train
- d) Train running on a straight track
- 798. Which of the following 4 statements is false
 - a) A body can have zero velocity and still be accelerated
 - b) A body can have a constant velocity and still have a varying speed
 - c) A body can have a constant speed and still have a varying velocity
 - d) The direction of the velocity of a body can change when its acceleration is constant
- 799. If a car covers $2/5^{th}$ of the total distance with v_1 speed and $3/5^{th}$ distance with v_2 then average speed is

a)
$$\frac{1}{2}\sqrt{v_1v_2}$$

$$b)\frac{v_1+v_2}{2}$$

c)
$$\frac{2v_1v_2}{v_1+v_2}$$

$$d) \frac{5v_1v_2}{3v_1 + 2v_2}$$

- 800. A thief is running away on a straight road in a jeep moving with a speed of 9ms⁻¹. A police man chases him on a motor cycle moving at a speed of 10ms⁻¹. If the instantaneous. Separation of the jeep from the motor cycle is 100m, how long will it take for the police man to catch the theif.
 - a) 1 s

- b) 19 s
- c) 90 s
- d) 100 s
- 801. A graph is drawn between velocity and time for the motion of a particle. The area under the curve between the time intervals t_1 and t_2 gives
 - a) Momentum of the particle

b) Displacement of the particle

c) Acceleration of the particle

- d) Change in velocity of the particle
- 802. Which of the following 4 statements is false
 - a) A body can have zero velocity and still be accelerated
 - b) A body can have a constant velocity and still have a varying speed

- c) A body can have a constant speed and still have a varying velocity
- d) The direction of the velocity of a body can change when its acceleration is constant
- 803. A car, starting from rest, accelerates at the rate f through a distance S, then continues at constant speed for time t and then decelerates at the rate $\frac{f}{2}$ to come to rest. If the total distance traversed is 15 S, then
 - $a) S = \frac{1}{2} f t^2$
- $b) S = \frac{1}{4} f t^2$
- c) $S = \frac{1}{72}ft^2$
- $d) S = \frac{1}{6} f t^2$
- 804. A stone is released from a balloon moving upwards with velocity v_0 a height h at t=0. Which of the following graphs is best representation of velocity-time graph for the motion of stone?

- 805. Two balls of same size but the density of one is greater than that of the other are dropped from the same height, then which ball will reach the earth first (air resistance is negligible)
 - a) Heavy ball
- b) Light ball
- c) Both simultaneously
- d) Will depend upon the density of the balls
- 806. The relation between time t and distance x is $t = ax^2 + bx$, where a and b constants are. The acceleration is
 - a) $-2abv^2$
- b) $2 bv^{3}$
- c) $-2av^{3}$
- d) $2av^2$
- 807. A body travelling with uniform acceleration crosses two points A and B with velocities $20ms^{-1}$ and $d30 ms^{-1}$ respectively. The speed of the body at the mid-point of A and B is nearest to
 - a) $25.5 \, ms^{-1}$
- b) $25 \, ms^{-1}$
- c) $24ms^{-1}$
- d) $10\sqrt{6} \, ms^{-1}$
- 808. The distance between two particles moving towards each other is decreasing at the rate of 6m/sec. If these particles travel with same speeds and in the same direction, then the separation increase at the rate of 4m/sec. The particles have speeds as
 - a) 5m/sec: 1m/sec
- b) 4 m/sec: 1m/sec
- c) 4 m/sec: 2m/sec
- d) 5 m/sec: 2m/sec
- 809. A frictionless wire *AB* is fixed on a sphere of radius *R*. A very small spherical ball slips on this wire. The time taken by this ball to slip from *A* to *B* is

- a) $\frac{2\sqrt{gR}}{g\cos\theta}$
- b) $2\sqrt{gR} \cdot \frac{\cos\theta}{g}$
- c) $2\sqrt{\frac{R}{g}}$
- d) $\frac{gR}{\sqrt{g\cos\theta}}$
- 810. For a particle moving in a straight line, the displacement of the particle at time t is given by $S = t^3 6t^2 + 3t + 7$. What is the velocity of the particle when its acceleration is zero?
 - a) -9ms^{-1}
- b) -12ms^{-1}
- c) 3 ms^{-1}
- d) 42 ms^{-1}
- 811. Two balls of same size but the density of one is greater than that of the other are dropped from the same height, then which ball will reach the earth first (air resistance is negligible)?
 - a) Heavy ball

b) Light ball

c) Both simultaneously

- d) Will depend upon the density of the balls
- 812. A particle is projected upwards. The times corresponding to height h while ascending and while descending are t_1 and t_2 respectively. The velocity of projection will be
 - a) gt_1

b) gt2

- c) $g(t_1 + t_2)$
- $\mathrm{d})\frac{g(t_1+t_2)}{2}$

- 813. A boggy of uniformly moving train is suddenly detached from train and stops after covering some distance.

 The distance covered by the boggy and distance covered by the train in the same time has relation
 - a) Both will be equal

b) First will be half of second

c) First will be 1/4 of second

d) No definite ratio

814. A particle moves along x-axis as

$$x = 4(t-2) + a(t-2)^2$$

Which of the following is true

- a) The initial velocity of the particle is 4
- b) The acceleration of particle is 2a
- c) The particle is at origin at t = 0
- d) None of these
- 815. A ball is thrown vertically upwards. Which of the following plots represents the speed-time graph of the ball during its flight if the air resistance is not ignored

816. A body starting from rest, accelerates at a constant rate a m/s^2 for some time after which it decelerates at a constant rate $b \ m/s^2$ to come to rest finally. If the total time elapsed is $t \ sec$, the maximum velocity attained by the body is given by

a)
$$\frac{ab}{a+b}$$
 t m/s

b)
$$\frac{ab}{a-b}t \ m/s$$

c)
$$\frac{2ab}{a+b}t$$
 m/s

d)
$$\frac{2ab}{a-b}t m/s$$

- 817. The numerical ratio of average velocity to average speed is
 - a) Always less than one

b) Always equal to one

c) Always more than one

- d) Equal to or less than one
- 818. A bullet moving with a speed of 100 ms⁻¹ can just penetrate two planks of equal thickness. Then, the number of such planks penetrated by the same bullet when the speed is doubled will be
 - a) 6

b) 10

c) 4

- d) 8
- 819. A particle starts from rest at t=0 and moves in a straight line with acceleration as shown in figure. The velocity of the particle at t=3 s is

- a) 2 ms^{-1}
- b) 4 ms^{-1}
- c) 6 ms^{-1}
- d) 8 ms^{-1}
- 820. A car A is travelling on a straight level road with a uniform speed of 60 km/h.

It is followed by another car B which is moving with a speed of 70km/h. When the distance between them is 2.5 km, the car B is given a deceleration of 20 km/h^2 . After how much time will B catch up with A.

- a) 1 hr
- b) 1/2hr
- c) 1/4hr
- d) 1/8hr
- 821. A man wants to reach point *B* on the opposite bank of a river flowing at a speed as shown in figure. What minimum speed relative to water should the man have so that he can reach point *B*? In which direction should be swim?

a) $u\sqrt{2}$

- b) $u/\sqrt{2}$
- c) 2u

- d) u/2
- 822. In the above question, the nearest distance between the two persons is
 - a) 10 m
- b) 9 m

c) 8 m

- d) 7.2 m
- 823. A bullet emerges from a barrel of length 1.2 m with a speed of 640 ms^{-1} . Assuming constant acceleration, the approximate time that it spends in the barrel after the gun is fired is
 - a) 4 ms
- b) 40 ms
- c) 400 µs
- d) 1 s
- 824. A body thrown vertically upwards with an initial velocity u reaches maximum height in 6 seconds. The ratio of the distances travelled by the body in the first second and the seventh second is
 - a) 1:1
- b) 11:1
- c) 1:2
- d) 1:11
- 825. A car starting from rest, accelerates at the rate f through a distance S, then continues at constant speed for time t and then decelerates at the rate f/2 to come to rest. If the total distance travelled is 15 S, then
 - a) S = ft
- b) $S = \frac{1}{6}ft^2$
- c) $S = \frac{1}{2} f t^2$
- d) None of these
- 826. Which of the following curves represent the v-t graph of an object falling on a metallic surface and bouncing back?

- 827. A point initially at rest moves along x-axis. Its acceleration varies with time as a (6t + 5) in ms⁻². If it starts from origin, the distance covered in 2s is
 - a) 20 n
- b) 18 m
- c) 16 m
- d) 25 m
- 828. A ball kicked vertically up attains a height of 19.6m and returns to the point of throw. If the ball is in air for four second, then the value of acceleration due to gravity is
 - a) 4.9 ms^{-2}
- b) 9.8ms^{-2}
- c) 10 ms^{-2}
- d) $2 \times 9.8 \text{ms}^{-2}$.

829. A man walks on a st	raight road from his home	to a market 2.5 km away v	with a speed of 5 km/h. Finding
the market closed, h	e instantly turns and walk	s back home with a speed	of 7.5 km/h . The average speed of
the man over the in	terval of time 0 to 40 min.	Is equal to	
a) 5 <i>km/h</i>	b) $\frac{25}{4} \ km/h$	c) $\frac{30}{4}$ km/h	d) $\frac{45}{8} km/h$
830. The correct stateme	ent from the following is		8.54

- a) A body having zero velocity will not necessarily have zero acceleration
- b) A body having zero velocity will necessarily have zero acceleration
- c) A body having uniform speed can have only uniform acceleration
- d) A body having non-uniform velocity will have zero acceleration
- 831. Water drops fall from a tap on the floor 5m below at regular intervals of time, the first drop striking the floor when the fifth drop begins to fall. The height at which the third drop will be, from ground, at the instant when first drop strikes the ground, will be $(g = 10 \text{ms}^{-2})$
 - a) 1.25 m
- b) 2.15 m
- c) 2.73 m
- d) 3.75 m
- 832. Two cars leave one after the other and travel with and acceleration of 0.4ms⁻². Two minutes after the departure of the first car, the distance between them becomes 1.90 km. The time interval between their departures is
 - a) 50 s
- b) 60 s
- c) 70 s
- 833. A stone falls freely from rest and the total distance covered by it in the last second of its motion equals the distance covered by it in the first three seconds of its motion. The stone remains in the air for
 - a) 6 s

b) 5 s

c) 7 s

- 834. Water drops fall at regular intervals from a tap which is 5 m above the ground. The third drop is leaving the tap at the instant the first drop touches the ground. How far above the ground is the second drop at that instant
 - a) 2.50 m
- b) 3.75 m
- c) 4.00 m
- d) 1.25 m
- 835. A boy standing at the top of a tower of 20 m height drops a stone. Assuming $g = 10 \text{ ms}^{-2}$, the velocity with which it hits the ground is
 - a) $5.0 \, m/s$
- b) $10.0 \, m/s$
- c) $20.0 \, m/s$
- 836. A body starting from rest moves with uniform acceleration. The distance covered by the body in time t is proportional to

- b) $t^{3/2}$
- c) t^2

- 837. A man runs at a speed of 4ms^{-1} to overtake a standing bus. When he is 6 m behind the door at t=0, the bus moves forward and continues with a constant acceleration of 1.2ms⁻². The man reaches the door in time t. Then,
 - a) $4t = 6 + 0.6t^2$
- b) $1.2t^2 = 4t$
- c) $4t^2 = 1.2t$
- d) $6 + 4t = 0.2t^2$
- 838. A body starts from rest and moves with uniform acceleration. Which of the following graphs represent its

- 839. An object accelerates from rest to a velocity 27.5 ms⁻¹ in 10 s, then the distance covered after next 10 s is
- b) 137.5 m
- c) 412.5 m
- d) 175 m
- 840. v t graph for a particle is as shown. The distance travelled in the first 4 s is

MOTION IN A STRAIGHT LINE

						: ANS	WI	ER K	EY:						
1)	c	2)	a	3)	b	4)	b	161)	a	162)	a	163)	c	164)	
5)	d	6)	b	7)	a	8)	b	165)	c	166)	C	167)	c	168)	
9)	a	10)	a	11)	a	12)	d	169)	c	170)	c	171)	a	172)	
13)	b	14)	d	15)	d	16)	d	173)	b	174)	d	175)	d	176)	
17)	c	18)	b	19)	C	20)	c	177)	a	178)	a	179)	b	180)	
21)	C	22)	b	23)	C	24)	b	181)	a	182)	c	183)	c	184)	
25)	b	26)	b	27)	b	28)	b	185)	a	186)	d	187)	a	188)	
29)	a	30)	b	31)	a	32)	d	189)	d	190)	a	191)	C	192)	
33)	C	34)	b	35)	d	36)	b	193)	C	194)	a	195)	d	196)	
37)	d	38)	d	39)	a	40)	a	197)	d	198)	b	199)	b	200)	
41)	a	42)	b	43)	a	44)	a	201)	a	202)	C	203)	b	204)	
45)	b	46)	b	47)	a	48)	d	205)	a	206)	d	207)	d	208)	
49)	C	50)	c	51)	b	52)	d	209)	d	210)	a	211)	b	212)	
53)	a	54)	c	55)	a	56)	b	213)	b	214)	b	215)	b	216)	
57)	b	58)	d	59)	b	60)	b	217)	a	218)	a	219)	b	220)	
61)	c	62)	b	63)	d	64)	c	221)	a	222)	c	223)	d	224)	
65)	d	66)	a	67)	a	68)	c	225)	b	226)	a	227)	b	228)	
69)	b	70)	b	71)	b	72)	b	229)	b	230)	b	231)	c	232)	
73)	b	74)	a	75)	d	76)	b	233)	C	234)	d	235)	a	236)	
77)	b	78)	d	79)	C	80)	d	237)	a	238)	d	239)	d	240)	
81)	d	82)	a	83)	a	84)	a	241)	d	242)	d	243)	d	244)	
85)	c	86)	c	87)	c	88)	c	245)	c	246)	b	247)	c	248)	
89)	b	90)	a	91)	c	92)	c	249)	d	250)	a	251)	c	252)	
93)	C	94)	a	95)	a	96)	a	253)	a	254)	a	255)	b	256)	
97)	c	98)	a	99)	c	100)	a	257)	a	258)	c	259)	d	260)	
101)	a	102)	b	103)	a	104)	c	261)	c	262)	a	263)	c	264)	
105)	b	106)	d	107)	d	108)	a	265)	c	266)	b	267)	b	268)	
109)	a	110)	a	111)	b	112)	8237	269)	С	270)	a	271)	a	272)	
113)	a	114)	a	115)	b	116)	c	273)	d	274)	d	275)	a	276)	
117)	d	118)	b	119)	c	120)	d	277)	d	278)	a	279)	d	280)	
121)	c	122)	b	123)	d	124)		281)	a	282)	a	283)	b	284)	
125)	a	126)	d	127)	c	128)		285)	b	286)	b	287)	b	288)	
129)	a	130)	d	131)	b	132)		289)	a	290)	c	291)	d	292)	
133)	c	134)	b	135)	b	136)		293)	d	294)	b	295)	d	296)	
137)	C	138)	d	139)	b	140)		297)	d	298)	d	299)	b	300)	
141)	d	142)	d	143)	c	144)	- 1	301)	d	302)	c	303)	b	304)	
145)	a	146)	a	147)	a	148)		305)	c	306)	d	307)	b	308)	
149)	b	150)	d	151)	a	152)	0.00	309)	b	310)	d	311)	c	312)	
153)	d	154)	b	155)	a	156)		313)	d	314)	d	315)	a	316)	
157)	b	158)	a	159)	c	160)		317)	c	318)	b	319)	d	320)	

321)	b	322)	c	323)	d	324)	a	521)	c	522)	a	523)	d	524)	d
325)	d	326)	b	327)	b	328)	ь	525)	a	526)	b	527)	C	528)	d
329)	a	330)	С	331)	d		c	529)	a	530)	d	531)	a	532)	d
333)	b	334)	С	335)	b	22.5		533)	a	534)	С	535)	c	536)	a
337)	a	338)	b	339)	a		- 1	537)	d	538)	С	539)	c	540)	b
341)	c	342)	c	343)	b		- 1	541)	a	542)	b	543)	С	544)	b
345)	b	346)	d	347)	a			545)	d	546)	d	547)	C	548)	a
349)	d	350)	С	351)	b	(- 1	549)	С	550)	а	551)	a	552)	С
353)	С	354)	b	355)	c		- 1	553)	a	554)	b	555)	b	556)	b
357)	d	358)	d	359)	b		- 1	557)	a	558)	С	559)	a	560)	c
361)	a	362)	b	363)	d			561)	С	562)	С	563)	a	564)	d
365)	a	366)	b	367)	c		- 1	565)	d	566)	a	567)	c	568)	С
369)	c	370)	d	371)	a	0=0)		569)	a	570)	d	571)	b	572)	c
373)	b	374)	a	375)	a		- 1	573)	С	574)	b	575)	b	576)	b
377)	b	378)	a	379)	c		- 1	577)	b	578)	С	579)	b	580)	С
381)	a	382)	b	383)	a			581)	b	582)	b	583)	b	584)	С
385)	b	386)	b	387)	b	200		585)	b	586)	d	587)	d	588)	b
389)	b	390)	b	391)	b			589)	d	590)	a	591)	a	592)	d
393)	a	394)	d	395)	c	0013	- 1	593)	a	594)	a	595)	b	596)	d
397)	d	398)	d	399)	c			597)	С	598)	b	599)	b	600)	b
401)	a	402)	b	403)	d			601)	d	602)	С	603)	С	604)	d
405)	c	406)	a	407)	b			605)	С	606)	b	607)	d	608)	a
409)	d	410)	d	411)	c			609)	b	610)	b	611)	b	612)	c
413)	a	414)	b	415)	c		II-	613)	b	614)	b	615)	c	616)	a
417)	С	418)	С	419)	С	400)	- 1	617)	a	618)	a	619)	c	620)	b
421)	c	422)	a	423)	d			621)	d	622)	С	623)	C	624)	d
425)	c	426)	d	427)	a		- 1	625)	d	626)	b	627)	a	628)	d
429)	С	430)	b	431)	b			629)	c	630)	c	631)	С	632)	d
433)	b	434)	b	435)	b			633)	С	634)	b	635)	a	636)	С
437)	b	438)	b	439)	d		II.	637)	С	638)	b	639)	b	640)	С
441)	d	442)	b	443)	a			641)	a	642)	d	643)	С	644)	d
445)	a	446)	c	447)	c			645)	d	646)	c	647)	a	648)	a
449)	b	450)	a	451)	b			649)	d	650)	b	651)	d	652)	d
453)	b	454)	c	455)	d		- 1	653)	a	654)	a	655)	a	656)	a
457)	a	458)	d	459)	a			657)	b	658)	b	659)	a	660)	d
461)	c	462)	b	463)	c		- 1	661)	d	662)	a	663)	a	664)	b
465)	d	466)	d	467)	b		a	665)	d	666)	b	667)	a	668)	b
469)	d	470)	c	471)	d	200000000000000000000000000000000000000	a	669)	a	670)	a	671)	d	672)	a
473)	b	474)	b	475)	b		a	673)	c	674)	b	675)	b	676)	a
477)	d	478)	c	479)	d	480)	d	677)	C	678)	a	679)	d	680)	b
481)	a	482)	a	483)	d	484)	ь	681)	d	682)	b	683)	b	684)	c
485)	a	486)	c	487)	c	488)	ь	685)	c	686)	c	687)	d	688)	c
489)	d	490)	b	491)	c	492)	c	689)	b	690)	b	691)	b	692)	a
493)	c	494)	d	495)	d	496)	d	693)	c	694)	d	695)	d	696)	c
497)	a	498)	b	499)	a	500)	c	697)	d	698)	a	699)	C	700)	a
501)	b	502)	c	503)	a	504)	d	701)	b	702)	b	703)	a	704)	c
505)	a	506)	b	507)	a	1000 CO.	- I.	705)	d	706)	a	707)	d	708)	b
509)	b	510)	c	511)	b	512)	c	709)	a	710)	b	711)	c	712)	b
513)	b	514)	a	515)	c		d	713)	a	714)	c	715)	a	716)	c
517)	c	518)	b	519)	b	520)	c	717)	d	718)	b	719)	c	720)	c
(353)		3		150		₹¥		573		53		8		850	

721)	b	722)	a	723)	d	724)	c	785)	c	786)	a	787)	b	788)	d	
725)	c	726)	b	727)	d	728)	d	789)	b	790)	d	791)	a	792)	b	
729)	a	730)	b	731)	b	732)	d	793)	c	794)	b	795)	b	796)	a	
733)	d	734)	b	735)	b	736)	b	797)	d	798)	b	799)	d	800)	d	
737)	a	738)	a	739)	a	740)	b	801)	b	802)	b	803)	C	804)	a	
741)	d	742)	c	743)	a	744)	c	805)	C	806)	C	807)	a	808)	a	
745)	a	746)	C	747)	b	748)	a	809)	C	810)	a	811)	C	812)	d	
749)	d	750)	b	751)	b	752)	d	813)	b	814)	b	815)	C	816)	a	
753)	d	754)	a	755)	d	756)	c	817)	d	818)	d	819)	b	820)	b	
757)	a	758)	b	759)	b	760)	a	821)	b	822)	c	823)	a	824)	b	
761)	d	762)	d	763)	d	764)	b	825)	d	826)	d	827)	b	828)	b	
765)	b	766)	d	767)	a	768)	a	829)	d	830)	a	831)	d	832)	a	
769)	a	770)	b	771)	d	772)	b	833)	b	834)	b	835)	c	836)	c	
773)	d	774)	С	775)	a	776)	c	837)	a	838)	b	839)	c	840)	b	
777)	b	778)	С	779)	d	780)	c									
781)	b	782)	d	783)	d	784)	а									

MOTION IN A STRAIGHT LINE

: HINTS AND SOLUTIONS :

2 (a)

The equation of motion

$$s = ut + \frac{1}{2} at^2$$
$$= 0 + \frac{1}{2} at^2 = \frac{1}{2} at^2$$

The graph plot is as shown.

3 (b

Let the initial velocity of ball be *u*

Time of rise $t_1 = \frac{u}{g+a}$ and height reached $= \frac{u^2}{2(g+a)}$

Time of fall t_2 is given by

$$\frac{1}{2}(g-a)t_2^2 = \frac{u^2}{2(g+a)}$$

$$\Rightarrow t_2 = \frac{u}{\sqrt{(g+a)(g-a)}} = \frac{u}{(g+a)} \sqrt{\frac{g+a}{g-a}}$$

 $\therefore t_2 > t_1 \text{ because } \frac{1}{g+a} < \frac{1}{g-a}$

4 (b

$$v = u + at = u + \left(\frac{F}{m}\right)t = 20 + \left(\frac{100}{5}\right) \times 10$$

= 220 m/s

5 (d

If t_1 and t_2 are the time, when body is at the same height then,

$$h = \frac{1}{2}gt_1t_2 = \frac{1}{2} \times g \times 2 \times 10 = 10 g$$

6 **(b**)

Relative velocity of one train w.r.t. other = 10 + 10 = 20m/s

Relative acceleration= $0.3 + 0.2 = 0.5m/s^2$ If train crosses each other then from $s = ut + \frac{1}{2}at^2$

$$As, s = s_1 + s_2 = 100 + 125 = 225$$

$$\Rightarrow 225 = 20t + \frac{1}{2} \times 0.5 \times 0.5 \times t^2$$

$$\Rightarrow 0.5t^2 + 40t - 450 = 0$$

$$\Rightarrow t = \frac{-40 \pm \sqrt{1600 + 4.(005) \times 450}}{1}$$

$$= -40 + 50$$

 $\therefore t = 10sec \text{ (Taking +ve value)}$

(a

Distance between the balls = Distance travelled by first ball in 3 seconds – Distance travelled by second ball in 2 seconds = $\frac{1}{2}g(3)^2 - \frac{1}{2}g(2)^2$ =

45 - 20 = 25 m

(b)

The velocity of balloon at height $h, v = \sqrt{2\left(\frac{g}{8}\right)h}$

When the stone released from this balloon, it will go upward with velocity, $=\frac{\sqrt{gh}}{2}$ (Same as that of balloon). In this condition time taken by stone to reach the ground

$$t = \frac{v}{g} \left[1 + \sqrt{1 + \frac{2gh}{v^2}} \right] = \frac{\sqrt{gh/2}}{g} \left[1 + \frac{2gh}{gh/4} \right]$$
$$= \frac{2\sqrt{gh}}{g} = 2\sqrt{\frac{h}{g}}$$

(a) $\begin{array}{c|c}
a \\
\uparrow 3 \\
\hline
 & 1 \\
\hline
 & 2 \\
\hline
 & 3 \\
\hline
 & 4 \\
\hline
 & 1
\end{array}$

Taking the motion from 0 to 2 s u = 0, $a = 3ms^{-2}$, t = 2s, v = ? $v = u + at = 0 + 3 \times 2 = 6ms^{-1}$

Taking the motion from 2 *s* to 4 *s* $v = 6 + (-3)(2) = 0ms^{-1}$

$$H_{\rm max} = \frac{u^2}{2g} \Rightarrow H_{\rm max} \propto \frac{1}{g}$$

On planet B value of g is 1/9 times to that of A. So value of $H_{\rm max}$ will become 9 times $i.e.\ 2\times 9=18\ metre$

11 (a)

After balling out from point *A* parachutist falls freely under gravity. The velocity acquired by it will 'v'

From
$$v^2 = u^2 + 2as = 0 + 2 \times 9.8 \times 50 = 980$$

[As $u = 0$, $a = 9.8m/s^2$, $s = 50 m$]

At point B, parachute opens and it moves with retardation of $2 m/s^2$ and reach at ground (point C) with velocity of 3 m/s

For the part 'BC' by applying the equation $v^2 = u^2 + 2as$

$$v = 3m/s, u = \sqrt{980} \ m/s, a = -2m/s^2, s = h$$

$$\Rightarrow (3)^2 = (\sqrt{980})^2 + 2 \times (-2) \times h \Rightarrow 9$$

$$= 980 - 4h$$

$$\Rightarrow h = \frac{980 - 9}{4} = \frac{971}{4} = 242.7 \cong 243 \ m$$

So, the total height by which parachutist bail out = 50 + 243 = 293 m

12 (d)

Acceleration due to gravity is independent of mass of body

13 **(b)**

Distance average speed = $\frac{2v_1v_2}{v_1+v_2} = \frac{2\times 2.5\times 4}{2.5+4}$

$$=\frac{200}{65}=\frac{40}{13}km/hr$$

14 (d)

 $S \propto u^2$. If *u* becomes 3 times then *S* will become 9 times

$$i.e.\,9\times20=180m$$

Average speed =
$$-\frac{\text{Total distance}}{\text{Total time}} = \frac{x}{t_1 + t_2}$$

= $\frac{x}{\frac{x/3}{v_1} + \frac{2x/3}{v_2}} = \frac{1}{\frac{1}{3 \times 20} + \frac{2}{3 \times 60}} = 36 \text{ km/hr}$

16 (d)

$$v = 0 + na \Rightarrow a = v/n$$

Now, distance travelled in $n \sec \Rightarrow S_n = \frac{1}{2}an^2$ and distance travelled in $(n-2)\sec \Rightarrow S_{n-2} = \frac{1}{2}a(n-2)^2$

 \div Distance travelled in last 2 seconds,

$$= S_n - S_{n-2} = \frac{1}{2}an^2 - \frac{1}{2}a(n-2)^2$$

$$\frac{a}{2}[n^2 - (n-2)^2] = \frac{a}{2}[n + (n-2)][n - (n-2)]$$

$$= a(2n-2) = \frac{v}{n}(2n-2) = \frac{2v(n-1)}{n}$$

17 (c)

When packet is released from the balloon, it acquires the velocity of balloon of value $12 \ m/s$. Hence velocity of packet after $2 \ sec$, will be $v = u + gt = 12 - 9.8 \times 2 = -76 \ m/s$

18 **(b)**

Distance covered = Area enclosed by v - t graph = Area of triangle = $\frac{1}{2} \times 4 \times 8 = 16 m$

19 (c)

Mass does not affect maximum height $H=\frac{u^2}{2g}\Rightarrow H\propto u^2$, So if velocity is doubled then height will become four times.i.e. $H=20\times 4=80m$

20 (c)

Distance covered in a particular time is

$$s_n = u + \frac{1}{2}g(2n - 1)$$

$$s_1 = 0 + \frac{1}{g}(2 \times 1 - 1) = \frac{g}{2}$$

$$s_2 = 0 + \frac{1}{2}g(2 \times 2 - 1) = \frac{3}{2}g$$

And
$$s_3 = 0 + \frac{1}{2} g(2 \times 3 - 1) = \frac{5}{2} g$$

Hence, the required ration is

$$s_1: s_2: s_3 = \frac{\mathsf{g}}{2}: \frac{3}{2}\mathsf{g}: \frac{5}{2}\mathsf{g}$$

$$= 1: 3: 5$$

21 (c)

$$S_n = u + \frac{a}{2}(2n - 1) \Rightarrow 1.2 = 0 + \frac{a}{2}(2 \times 6 - 1)$$

$$\Rightarrow a = \frac{1.2 \times 2}{11} = 0.218 \, m/s^2$$

22 **(b**)

The area under acceleration time graph gives change in velocity. As acceleration is zero at the end of $11\ sec$

i.e. v_{max} =Area of ΔOAB

$$=\frac{1}{2}\times11\times10=55\,m/s$$

23 (c)

$$h = 0 + \frac{1}{2}gt^2 \implies t^2 \propto h$$

$$\therefore \frac{t_1}{t_2} = \sqrt{\frac{h_1}{h_2}} = \sqrt{\frac{16}{25}} = \frac{4}{5}$$

24 **(b)**

$$x = \alpha t^3, y = \beta t^3$$

$$v_x = \frac{dx}{dt} = 3\alpha t^2$$

$$v_y = \frac{dy}{dt} = 3 \beta t^2$$

Resultant velocity, $v = \sqrt{v_x^2 + v_y^2}$

$$= \sqrt{9\alpha^2 t^4 + 9\beta^2 t^4}$$
$$= 3t^2 \sqrt{\alpha^2 + \beta^2}$$

25 (b)

Velocity at the time of striking the floor,

$$u = \sqrt{2gh_1} = \sqrt{2\times 9.8\times 10} = 14m/s$$

Velocity with which it rebounds

$$v = \sqrt{2gh_2} = \sqrt{2 \times 9.8 \times 2.5} = 7 \ m/s$$

∴ Change in velocity $\Delta v = 7 - (-14) = 21m/s$

∴ Acceleration =
$$\frac{\Delta v}{\Delta t} = \frac{21}{0.01}$$

= $2100m/s^2$ (upwards)

26 **(b)**

For one dimensional motion along a plane

$$S = ut + \frac{1}{2}at^2 \Rightarrow 9.8 = 0 + \frac{1}{2}g\sin 30^{\circ}t^2 \Rightarrow t$$
$$= 2\sec c$$

27 **(b**

$$S_{3^{\text{rd}}} = 10 + \frac{10}{2}(2 \times 3 - 1) = 35 \text{ m}$$

 $S_{2^{\text{nd}}} = 10 + \frac{10}{2}(2 \times 2 - 1) = 25 \text{ m} \Rightarrow \frac{S_{3^{\text{rd}}}}{S_{\text{end}}} = \frac{7}{5}$

28 **(b)**

Average velocity is that uniform velocity with which the object will cover the same displacement in same interval of time as it does with its actual variable velocity during that time interval.

Here, total distance covered

=
$$(3 \text{ ms}^{-1} \times 20 \text{ s}) + (4 \text{ ms}^{-1} \times 20 \text{ s})$$

+ $(5 \text{ ms}^{-1} \times 20 \text{ s})$

$$= (60 + 80 + 100) = 240 \text{ m}$$

Total time taken = 20 + 20 + 20 = 60 s

$$\therefore \text{ Average velocity} = \frac{240}{60} = 4 \text{ ms}^{-1}$$

29 (a)

As the train are moving in the same direction. So the initial relative speed (v_1-v_2) and by applying retardation final relative speed becomes zero

From
$$v = u - at \Rightarrow 0 = (v_1 - v_2) - at \Rightarrow t = \frac{v_1 - v_2}{a}$$

30 **(b)**

If acceleration is variable (depends on time) then

$$v = u + \int (f)dt = u + \int (a t)dt = u + \frac{a t^2}{2}$$

31 (a)

Let initial (t = 0) velocity of particle= u

For first 5 sec of motion $s_5 = 10 metre$

$$s = ut + \frac{1}{2}at^2 \Rightarrow 10 = 5u + \frac{1}{2}a(5)^2$$

2u + 5a = 4

For first 8 sec of motion $s_8 = 20$ metre

$$20 = 8u + \frac{1}{2}a(8)^2 \Rightarrow 2u + 8a = 5$$

By solving $u = \frac{7}{6}m/s$ and $a = \frac{1}{2}m/s^2$

Now distance travelled by particle in Total 10 sec

$$s_{10} = u \times 10 + \frac{1}{2}a(10)^2$$

By substituting the value of u and a we will get $s_{10} = 28.3 m$

so the distance in last $2 \sec = s_{10} - s_8$ = 28.3 - 20 = 8.3m

32 (d)

Given, a = 1 m/s, s = 48 m

By equation of motion

$$48 = 10t + \frac{1}{2}at^2$$

$$t = 8 s$$

$$\frac{dv}{dt} = bt \Rightarrow dv = bt dt \Rightarrow v = \frac{bt^3}{2} + K_1$$

At
$$t = 0$$
, $v = v_0 \Rightarrow K_1 = v_0$

We get
$$v = \frac{1}{2}bt^2 + v_0$$

$$Again \frac{dx}{dt} = \frac{1}{2}bt^2 + v_0$$

$$\Rightarrow x = \frac{1}{2} \frac{bt^3}{3} + v_0 t + K_2$$

At
$$t = 0$$
, $x = 0 \Rightarrow K_2 = 0$

$$\therefore x = \frac{1}{6}bt^3 + v_0t$$

34 (b)

Let initial velocity of body a point A is v, AB is 40 cm.

From
$$v^2 = u^2 - 2as$$

$$\Rightarrow \qquad \left(\frac{v}{2}\right)^2 = v^2 - 2a \times 40$$

Or
$$a = \frac{3v^2}{320}$$

Let on penetrating 40 cm in a wooden block, the body moves x distance from B to C.

So, for B to C

$$u=\frac{v}{2}, v=0$$

$$s = x, a = \frac{3v^2}{320}$$
 (deceleration)

$$(0)^{2} = \left(\frac{v}{2}\right)^{2} - 2 \times \frac{3v^{2}}{320} \times x$$

Or
$$x = \frac{40}{3}$$
 cm

35 (d)

Since, acceleration is in the direction of instantaneous velocity, so particle always moves in forward direction.

Hence, (d) is correct.

36 **(b)**

 $H_{\rm max} \propto u^2$, It body projected with double velocity then maximum height will become four times *i. e.* 200 m

37 (d)

The equation of motion

$$\left(\frac{u}{2}\right)^2 = u^2 - 2g(AO)$$

$$2g \times AO = u^2 - \frac{u^2}{4} = \frac{3u^2}{4}$$

$$AO = \frac{3u^2}{8g}$$

When particle will reach at point B

$$\left(\frac{u}{3}\right)^2 = u^2 - 2g(OB)$$

$$OB = \frac{8u^2}{18g}$$

When particle will reach at point C

$$\left(\frac{u}{4}\right)^2 = u^2 - 2g\left(OC\right)$$

$$OC = \frac{15u^2}{32g}$$

$$AB = OB - OA = \frac{u^2}{g} \left[\frac{8}{18} - \frac{3}{8} \right] = \frac{5u^2}{72g}$$

$$BC = OC - OB = \frac{u^2}{g} \left[\frac{15}{32} - \frac{8}{18} \right]$$

The ratio,
$$\frac{AB}{BC} = \frac{20}{7}$$

38 (4)

From first equation of motion, we have

$$v = u + at$$

Given,
$$u = 0$$
, $a_1 = 2 \text{ ms}^{-2}$

$$t = 10 \, s.$$

$$v_1 = 2 \times 10 = 20 \text{ ms}^{-1}$$

In the next 30 s, the constant velocity becomes

$$v_2 = v_1 + a_2 t_2$$

Given,
$$v_1 = 20 \text{ ms}^{-1}$$
, $a_2 = 2 \text{ ms}^{-2}$, $t_2 = 30 \text{ s}$

$$v_2 = 20 + 2 \times 30 = 80 \text{ ms}^{-1}.$$

When it decelerates, then

$$v_3^2 = u^2 - 2a_3 s$$

Here, $v_3 = 0$ (train stops), $v_2 = 80 \text{ ms}^{-1}$,

$$a_3 = 4 \text{ ms}^{-2}$$

$$0 = (80)^2 - 2 \times 4 \times s$$

Or
$$s = \frac{80 \times 80}{8} = 800 \text{ m}.$$

39 (a)

Distance between the balls = Distance travelled by first ball in 3 seconds - Distance travelled by second ball in 2 seconds = $\frac{1}{2}g(3)^2 - \frac{1}{2}g(2)^2 =$

$$45 - 20 = 25 m$$

40 (a)

Average speed $\bar{v} = \frac{\text{Total distance travelled}}{\text{Total distance travelled}}$ Average speed $v = \frac{\text{Total time taken}}{\text{Total time taken}}$ $= \frac{8.4km + 2km}{t_1 + t_2} = \frac{10.4 \text{ km}}{\left(\frac{8.4 \text{ km}}{70 \text{ km/h}}\right) + \frac{1}{2}h}$

$$t_1 + t_2 \qquad \left(\frac{8.4 \text{ km}}{70 \text{ km/h}}\right) + \frac{1}{2}h$$
$$= \frac{10.4 \text{ km}}{0.12h + 0.5h} = 16.8 \text{ km/h}$$

41 (a)

Using

$$V = u + at$$

$$V = gt$$
 ...(i

Comparing with y = mx + c

Equation (i) represents a straight line passing through origin inclined x-axis (slope -g)

42 (b)

Let particle thrown with velocity u and its maximum height is H then $H = \frac{u^2}{2a}$

When particle is at height H/2, then its speed is $10 \, m/s$

From equation $v^2 = u^2 - 2ah$

$$(10)^2 = u^2 - 2g\left(\frac{H}{2}\right) = u^2 - 2g\frac{u^2}{4g} \Rightarrow u^2 = 200$$

Maximum height $\Rightarrow H = \frac{u^2}{2a} = \frac{200}{2 \times 10} = 10 \text{ m}$

43

Since slope of graph remains constant for velocity-time graph

45 (b)

$$v = u + \int adt = u + \int (3t^2 + 2t + 2)dt$$

$$= u + \frac{3t^3}{3} + \frac{2t^2}{2} + 2t = u + t^3 + t^2 + 2t$$

$$= 2 + 8 + 4 + 4 = 18 \text{ m/s} \quad (As t = 2 \text{ sec})$$

46 **(b)**

For vertically upward motion, $h_1 = v_0 t - \frac{1}{2}gt^2$ and for vertically downward motion, $h_2 = v_0 t +$

 \therefore Total distance covered in $t \sec h = h_1 + h_2$ $= 2v_0t$

47 (a)

An aeroplane files 400 m north and 300 m south so the net displacement is 100 m towards north Then it files 1200 m upwards so r =

$$\sqrt{(100)^2 + (1200)^2}$$

$$= 1204 m \simeq 1200 m$$

The option should be 1204 m, because this value mislead one into thinking that net displacement is in upward direction only

48

$$x = 2t^{3} + 21t^{2} + 60t + 6$$

$$v = \frac{dx}{dt} = 6t^{2} + 42t + 60$$
But, $v = 0$ (given)
$$t^{2} + 7t + 10 = 0$$

$$t = -5s$$
or $t = -2s$

or
$$t = -2s$$

$$a = \frac{dv}{dt} = 12t + 42$$

$$a \mid_{t=5s} = -60 + 42 = -18 \text{ms}^{-2}$$

 $a \mid_{t=-2s} = -24 + 42 = 18 \text{ms}^{-2}$

49 (c)

For shortest possible path man should swim with an angle $(90 + \theta)$ with downstream

From the fig,

$$\sin \theta = \frac{v_r}{v_m} = \frac{5}{10} = \frac{1}{2}$$

$$\Rightarrow : \theta = 30^\circ$$

So angle with downstream = $90^{\circ} + 30^{\circ} = 120^{\circ}$

50 (c)

Since displacement is always less than or equal to distance, but never greater than distance. Hence numerical ratio of displacement to the distance covered is always equal to or less than one

52 (d)

Average speed =
$$-\frac{\text{Total distance}}{\text{Total time}} = \frac{x}{t_1 + t_2}$$

= $\frac{x}{\frac{x/3}{v_1} + \frac{2x/3}{v_2}} = \frac{1}{\frac{1}{3 \times 20} + \frac{2}{3 \times 60}} = 36 \text{ km/hr}$

53 (a)

Velocity required by body in 10 sec $v = 0 + 2 \times 10 = 20 \text{ m/s}$

And distance travelled by it in 10 sec

$$S_1 = \frac{1}{2} \times 2 \times (10)^2 = 100 \ m$$

Then it moves with constant velocity (20 m/s) for 30 sec

$$S_2 = 20 \times 30 = 600 m$$

After that due to retardation $(4 m/s^2)$ it stops

$$S_3 = \frac{v^2}{2a} = \frac{(20)^2}{2 \times 4} = 50m$$

Total distance travelled $S_1 + S_2 + S_3 = 750m$

54 (c)

Because acceleration is a vector quantity

55 (a

Average speed = $\frac{2v_dv_u}{v_d+v_u}$

56 (b)

Boat covers distance of 16 km in a still water in

$$ie \ v_B = \frac{16}{2} = 8 \text{kmh}^{-1}$$

Now, velocity of water

$$v_W = 4 \text{kmh}^{-1}$$

Time taken for going upstream

$$t_1 = \frac{8}{v_B - v_W} = \frac{8}{8 - 4} = 2h$$

(As water current oppose the motion of boat)

Time taken for going downstream

$$t_2 = \frac{8}{v_B + v_W} = \frac{8}{8+4} = \frac{8}{12}h$$

(As water current helps the motion of boat)

$$\therefore$$
 Total time = $t_1 + t_2$

$$=\left(2+\frac{8}{12}\right)h=2 \text{ h } 40 \text{ min}$$

58 (d

$$a = \frac{dv}{dt} = \frac{dv}{dx}\frac{dx}{dt} = v\frac{dv}{dx} = -\alpha x^2 \text{ [Given]}$$

$$\Rightarrow \int_{v_0}^{0} v dv = \alpha \int_{0}^{S} x^2 dx \Rightarrow \left[\frac{v^2}{2} \right]_{v_0}^{0} = -\alpha \left[\frac{x^3}{3} \right]_{0}^{S}$$

$$\Rightarrow \frac{v_0^2}{2} = \frac{\alpha S^3}{3} \Rightarrow S = \left(\frac{3v^2}{2\alpha}\right)^{\frac{1}{3}}$$

59 **(b**)

$$h_1 = \frac{1}{2}gt_1^2 = \frac{10}{2} \times (5)^2 = 125 \text{ m}$$

$$h_2 = \frac{1}{2} gt_2^2 = \frac{10}{2} \times (3)^2 = 45 \text{ m}$$

$$h_1 - h_2 = 125 - 45 = 80 \text{ m}$$

60 (b)

$$v_t = 4t^3 - 2t$$

$$\Rightarrow \frac{dx_t}{dt} = 4t^3 - 2t$$

$$\Rightarrow \int dx_t = \int 4t^3 dt - \int 2t dt$$

$$\Rightarrow x_t = t^4 - t^2$$

Since,
$$x_t = 2m$$

$$t = \sqrt{2}s$$
 (rejecting negative time)

Now acceleration,

$$a_t = \frac{dv_t}{dt} = 12t^2 - 2 = 12(2) - 2 = 22\text{ms}^{-2}$$

61 **(c**)

Stopping distance=
$$\frac{\text{Kinetic energy}}{\text{Retarding force}} = \frac{\frac{1}{2}mu^2}{F}$$

$$=\frac{u^2}{2\mu g}[F=\mu mg]$$

So both will cover equal distance

62 (b)

Let at point *A* initial velocity of body is equal to zero.

for path
$$AB: v^2 = 0 + 2gh$$
 ... (i)

$$4v^2 = 2gx$$
 ...(ii)

Solving (i) and (ii), x = 4h

63 (d)

Both trains will travel a distance of 1 km before to come in rest. In this case by using $v^2 = u^2 + 2as$ $\Rightarrow 0 = (40)^2 + 2a \times 1000 \Rightarrow a = -0.8 \text{ } m/s^2$

64 (c

Since displacement is always less than or equal to distance, but never greater than distance. Hence numerical ratio of displacement to the distance covered is always equal to or less than one

65 (d)

The student is able to catch the bus if in time t the distance travelled by him is equal to the distance travelled by bus in time t

$$ie, s_1 = s_2 ...(i)$$

From Eq. (i)

$$0 + \frac{1}{2}at^2 = ut - d$$

Or
$$at^2 - 2ut + 2d = 0$$

It is quadratic equation

So,
$$t = \frac{+2u \pm \sqrt{4u^2 - 8ad}}{2} = \frac{+2u \pm 2\sqrt{u^2 - 2ad}}{2}$$

For t to be real

$$u \ge \sqrt{2ad} \ge \sqrt{2 \times 1 \times 50} = 10 \text{ ms}^{-1}$$

66 **(a)**

Average speed = $\frac{2v_dv_u}{v_d+v_u}$

67 **(a**

We know that the velocity of body is given by the slope of displacement – time graph so it is clear that initially slope of the graph is positive and after some time it becomes zero (corresponding to the peak of graph) and it will become negative

69 (b)

Only directions of displacement and velocity gets changed, acceleration is always directed vertically downward

70 **(b)**

We will solve the problem is terms of relative initial velocity, relative acceleration and relative displacement of the coin with respect to the floor of the lift.

$$u = 10 - 10 = 0 \text{ms}^{-1}, a = 9.8 \text{ms}^{-2}, s = 4.9 \text{m},$$

t=?

$$4.9 = 0 \times t + \frac{1}{2} \times 9.8 \times t^2$$

or
$$4.9t^2 = 4.9$$
 or $t = 1$ s

71 **(b)**

$$S_2 = \frac{1}{2}gt_2^2 = \frac{10}{2} \times (3)^2 = 45 m$$

$$S_1 = \frac{1}{2}gt_1^2 = \frac{10}{2} \times (5)^2 = 125 m$$

$$\therefore S_1 - S_2 = 125 - 45 = 80 \, m$$

72 **(b)**

$$v = \frac{ds}{dt} = 12t - 3t^2$$

Velocity is zero for t = 0 and t = 4 sec

73 **(b)**

$$h_n = \frac{g}{2}(2n-1) \Rightarrow h_{5^{\text{th}}} = \frac{10}{2}(2 \times 5 - 1) = 45 \text{ m}$$

74 (a)

Le the initial velocity = u

And acceleration = a

In 1st case $s_1 = ut_1 + \frac{1}{2} at_1^2$

$$200 = 2u + 2a$$
 (: $t_1 = 2$ s)

Or
$$u + a = 100$$
 ... (i)

In IInd case

$$s_2 = ut_2 + \frac{1}{2} at_2^2$$

$$+18a$$
 (: $t_2 = 2 + 4 = 6$ s)

Or
$$3a + u = 70$$

Solving Eqs. (i) and (ii), we get

$$a = -15 \text{ ms}^{-2}$$

And
$$u = 115 \text{ ms}^{-1}$$

$$v = u + at$$

$$= 115 - 15 \times 7 = 10 \text{ ms}^{-1}$$

Average acceleration =
$$\frac{\Delta v}{\Delta t}$$

= $\frac{\sqrt{2gh'} - (-\sqrt{2gh})}{\Delta t} = \frac{\sqrt{2gh'} + \sqrt{2gh}}{\Delta t}$
= $\frac{\sqrt{2 \times 10 \times 2.5} + \sqrt{2 \times 10 \times 10}}{0.01} \text{ms}^{-2}$
= $\frac{\sqrt{15} + \sqrt{200}}{0.01} \text{ms}^{-2} = \frac{5\sqrt{2} + 10\sqrt{2}}{0.01} \text{ms}^{-2}$
= $\frac{15\sqrt{2}}{0.01} \text{ms}^{-2} = 1500\sqrt{2} \text{ms}^{-2}$

The upward velocity has been taken as positive. Since average acceleration is positive therefore its direction is vertically upward.

77 **(b)**

Velocity of graph = Area of a-t graph $= (4 \times 1.5) - (2 \times 1) = 4m/s$

78 (d)

Let the man will be able to catch the bus after t s

$$10t = 48 + \frac{1}{2} \times 1 \times t^{2}$$
$$t^{2} - 20t + 96 = 0$$
$$(t - 12)(t - 8) = 0$$

t = 8s and t = 12s

Thus the man will be able to catch the bus after 8s

Stopping distance=
$$\frac{\text{Kinetic energy}}{\text{Retarding force}} = \frac{\frac{1}{2}mu^2}{F}$$

$$= \frac{u^2}{2\mu g} [F = \mu mg]$$

So both will cover equal distance

80 (d)

Body reaches the point of projection with same velocity

82 (a)

Distance covered in 5th second

$$S_{5^{th}} = u + \frac{a}{2}(2n - 1) = 0 + \frac{a}{2}(2 \times 5 - 1) = \frac{9a}{2}$$

$$S_5 = ut + \frac{1}{2}at^2 = 0 + \frac{1}{2} \times a \times 25 = \frac{25a}{2}$$
$$\therefore \frac{S_5^{th}}{S_5} = \frac{9}{25}$$

$$S \propto u^2 : \frac{S_1}{S_2} = \left(\frac{u_1}{u_2}\right)^2 \Rightarrow \frac{2}{S_2} = \frac{1}{4} \Rightarrow S_2 = 8 \text{ m}$$

$$\frac{dx}{dt} = 2at - 3bt^2 \Rightarrow \frac{d^2x}{dt^2} = 2a - 6bt = 0 \Rightarrow t$$
$$= \frac{a}{3b}$$

86 (c)

Distance travelled by the particle is

$$x = 40 + 12t - t^3$$

We know that, speed is rate of change of distance

$$v = \frac{dx}{dt}$$

$$\therefore v = \frac{d}{dt}(40 + 12t - t^3) = 0 + 12 - 3t^2$$

But final velocity v = 0

$$\therefore 12 - 3t^2 = 0$$

$$\Rightarrow t^2 = \frac{12}{3} = 4 \Rightarrow t = 2s$$

Hence, distance travelled by the particle before coming to rest is given by

$$x = 40 + 12(2) - (2)^3 = 40 + 24 - 8 = 64 - 8$$
$$= 56m$$

87 (c)

From equation of motion, we have

$$s = ut + \frac{1}{2}gt^2$$

Where, u is initial velocity, g the acceleration due to gravity and t the time.

For upward motion

$$h = -ut_1 - \frac{1}{2}gt_1^2$$
 ... (i)

for downward motion

$$h = -ut_2 + \frac{1}{2}gt_2^2$$
 ... (ii)

multiplying Eq. (i) by t_2 and Eq. (ii) by t_1 and subtracting Eq. (ii) by Eq. (i), we get

$$h(t_2 - t_1) = \frac{1}{2}gt_1t_2(t_2 - t_1)$$

$$h = \frac{1}{2} gt_1t_2 \qquad ... (iii)$$

When stone is dropped from rest u = 0, reaches the ground in t second.

$$h = \frac{1}{2}gt^2 \qquad ... (iv)$$

Equating Eqs. (iii) and (iv), we get

$$\frac{1}{2}gt^2 = \frac{1}{2}g t_1 t_2$$

$$\Rightarrow \qquad t^2 = t_1 t_2 \ \Rightarrow t = \sqrt{t_1 t_2}$$

88 **(c)**

$$\frac{dv}{dt} = 6t \text{ or } dv = 6t, mv = \frac{6t^2}{2} = 3t^2,$$

$$dx = 3t^2dt \implies x = 3\frac{t^3}{2} = t^3$$

Region OA shows that graph bending toward time axis i.e. acceleration is negative.

Region AB shows that graph is parallel to time axis i.e. velocity is zero. Hence acceleration is zero.

Region BC shows that graph is bending towards displacement axis i.e. acceleration is positive. Region CD shows that graph having constant slope i. e. velocity is constant. Hence acceleration is zero

90 **(a)**
$$s \propto t^2 [\text{Given}] : s = Kt^2$$
 Acceleration $a = \frac{d^2s}{dt^2} = 2k [\text{constant}]$ It means the particle travels with uniform acceleration

91 (c) $v^2 = u^2 + 2gh \Rightarrow v = \sqrt{u^2 + 2gh}$

So for both the cases velocity will be equal

92 (c)

Let both balls meet at point *P* after time *t*

The distance travelled by ball A, $h_1 = \frac{1}{2}gt^2$

The distance travelled by ball B, $h_2 = ut - \frac{1}{2}gt^2$ $h_1 + h_2 = 400 \, m \Rightarrow ut = 400, t = 400/50$

 $h_1 = 320m \text{ and } h_2 = 80m$

93 (c)

$$v = (180 - 16x)^{1/2}$$

$$As \ a = \frac{dv}{dt} = \frac{dv}{dx} \cdot \frac{dx}{dt}$$

$$\therefore a = \frac{1}{2} (180 - 16x)^{-1/2} \times (-16) \left(\frac{dx}{dt}\right)$$

$$= -8(180 - 16x)^{-1/2} \times v$$

$$= -8(180 - 16x)^{-1/2} \times (180 - 16x)^{1/2}$$

$$= -8 \ m/s^2$$

94 (a)

Slope of displacement time-graph is velocity

$$\frac{v_1}{v_2} = \frac{\tan \theta_1}{\tan \theta_2} = \frac{\tan 30^{\circ}}{\tan 45^{\circ}} = \frac{1}{\sqrt{3}}$$

$$v_1: v_2 = 1: \sqrt{3}$$

95 (a)

The v-x equation from the given graph can be written as,

$$v = \left(-\frac{v_0}{x_0}\right) x + v_0 \qquad \dots (i)$$

$$\therefore \qquad a = \frac{dv}{dt} = \left(-\frac{v_0}{x_0}\right) \frac{dx}{dt} = \left(-\frac{v_0}{x_0}\right) v$$

Substituting v from Eq. (i), we get

$$a = \left(-\frac{v_0}{x_0}\right) \left[\left(-\frac{v_0}{x_0}\right) x + v_0 \right]$$

$$a = \left(\frac{v_0}{x_0}\right)^2 x - \frac{v_0^2}{x_0}$$

Thus, a - x graph is a straight line with positive slope and negative intercept.

96 (a)

When the stone is released from the balloon. Its

$$h = \frac{1}{2}at^2 = \frac{1}{2} \times 1.25 \times (8)^2 = 40 \text{ m}$$
 and velocity
 $v = at = 1.25 \times 8 = 10 \text{ m/s}$

Time taken by the stone to reach the ground

$$t = \frac{v}{g} \left[1 + \sqrt{1 + \frac{2gh}{v^2}} \right]$$
$$= \frac{10}{10} \left[1 + \sqrt{1 + \frac{2 \times 10 \times 40}{(10)^2}} \right]$$
$$= 4sec$$

97 (c)

Let v_1 , v_2 be the initial speeds of first and second runners. Let t be time by them when the first runner has completed 50m. During this time, the second runner has covered a distance = 50 - 1 =

So,
$$t = \frac{50}{v_1} = \frac{49}{v_2}$$
 ...(i)

Suppose, the second runner increases his speed to v_3 so that he covers the remaining distance (= 51m) in times t. So

$$t = \frac{51}{v_3} = \frac{49}{v_2}$$

or
$$v_3 = \frac{51}{49}v_2$$

or
$$v_3 = \left(1 + \frac{2}{49}\right)v_2$$
 or $\frac{v_3}{v_2} - 1 = \frac{2}{49}$

or
$$\frac{v_3 - v_2}{v_2} = \frac{2}{49}$$

or % increase
$$=\frac{2}{49} \times 100 = 4.1\%$$

98 (a)

If t_0 is the reaction time, then the distance covered during decelerated motion is $10 - 10t_0$.

Now, in the first case,

$$10^2 = 2a(10 - 10t_0) \qquad \dots (i)$$

Similarly, in the second case,

$$20^2 = 2a(30 - 20t_0)$$
 ...(ii)

Again, in the third case,

$$15^2 = 2a(x - 5t_0)$$
 ...(iii)

Dividing Eq.(ii) by Eq. (i),
$$\frac{20^2}{10^2} = \frac{30-20t_0}{10-10t_0}$$

or
$$40 - 40t_0 = 30 - 20t_0$$

or
$$20t_0 = 10$$
 or $t_0 = \frac{1}{2}s$

Dividing Eq. (iii) by Eq. (i), we get

$$\frac{225}{100} = \frac{x - 15t_0}{10 - 10t_0} \text{ or } \frac{9}{4} = \frac{x - 15 \times \frac{1}{2}}{10 - 10 \times \frac{1}{2}}$$

$$45 = 4x - 30$$
 or $4x = 75$

or
$$x = \frac{75}{4}$$
m = 18.75m

99 (c)

$$\mathbf{u} = 3\hat{\mathbf{i}} + 4\hat{\mathbf{j}}, \mathbf{a} = 0.4\hat{\mathbf{i}} + 0.3\hat{\mathbf{j}}$$

Speed $\mathbf{v} = \mathbf{u} + \mathbf{a}t$

$$= 3\hat{\mathbf{i}} + 4\hat{\mathbf{j}} + (0.4\hat{\mathbf{i}} + 0.3\hat{\mathbf{j}})10$$

$$= 3\hat{i} + 4\hat{j} + 4\hat{i} + 3\hat{j} = 7\hat{i} + 7\hat{j}$$

$$v = \sqrt{7^2 + 7^2} = 7\sqrt{2}$$
 unit

100 (a)

If t_1 and $2t_2$ are the time taken by particle to cover first and second half distance respectively

$$t_1 = \frac{x/2}{3} = \frac{x}{6}$$

$$x_1 = 4.5 t_2$$
 and $x_2 = 7.5 t_2$

So,
$$x_1 + x_2 = \frac{x}{2} \Rightarrow 4.5 t_2 + 7.5 t_2 = \frac{x}{2}$$

$$t_2 = \frac{x}{24}$$

Total time
$$t = t_1 + 2t_2 = \frac{x}{6} + \frac{x}{12} = \frac{x}{4}$$

So, average speed = 4 m/sec

101 (a)

$$s = ut + \frac{1}{2}at^2$$

$$s = \frac{1}{2}at^2 \qquad [\because u = 0]$$

It is an equation of parabola

102 (b)

Speed of stone in a vertically upward direction is 20m/s. So for vertical downward motion we will consider u = -20 m/s

$$v^2 = u^2 + 2gh = (-20)^2 + 2 \times 9.8 \times 200$$

= 4320 m/s

$$v \simeq 65m/s$$

103 (a)

$$h = \frac{1}{2}gt^2 = \frac{1}{2} \times 10 \times (4)^2 = 80 \text{ m}$$

104 (c)

Horizontal distance covered by the wheel in half revolution = πR

So the displacement of the point which was initially in contact with ground

$$=AA' = \sqrt{(\pi R)^2 + (2R)^2}$$

$$= R\sqrt{\pi^2 + 4} = \sqrt{\pi^2 + 4}$$
 [As $R = 1m$]

105 (b)

$$h = \frac{1}{2}gt^2$$

$$h' = \frac{1}{2}g(t - t_0)^2$$

$$h - h' = \frac{1}{2}g[t^2 - (t - t_0)^2]$$

$$= \frac{1}{2}g[t^2 - t^2 - t_0^2 + 2tt_0]$$

$$\Delta h = \frac{1}{2}gt_0(2t - t_0)$$

 Δh is increasing with time

106 (d)

Average acceleration =
$$\frac{\text{Change in velocity}}{\text{Time taken}} = \frac{v_2 - v_1}{t_2 - t_1}$$

= $\frac{[10 + 2(5)^2] - [10 + 2(2)^2]}{3} = \frac{60 - 18}{3} \frac{14m}{s^2}$

107 (d)

Relative velocity

$$= 10 + 5 = 15 \, m/sec$$

$$t = \frac{150}{15} = 10 \text{ sec}$$

108 (a)

If a body starts from rest with acceleration α and then retards with retardation β and comes to rest. The total time taken for this journey is t and distance covered is S

Then
$$S = \frac{1}{2} \frac{\alpha \beta t^2}{(\alpha + \beta)} = \frac{1}{2} \frac{5 \times 10}{(5 + 10)} \times t^2$$

 $\Rightarrow 1500 = \frac{1}{2} \frac{5 \times 10}{(5 + 10)} \times t^2 \Rightarrow t = 30 \text{ sec}$

109 (a)

$$h = \frac{1}{2}gt^2 = \frac{1}{2} \times 10 \times (4)^2 = 80 m$$

110 (a)

Effective speed of bullet

= speed of bullet + speed of police jeep

$$= 180 m/s + 45 km/h = (180 + 12.5) m/s$$
$$= 192.5 m/s$$

Speed of thief's jeep = $153 \ km/h = 42.5 \ m/s$ Velocity of bullet w.r.t. thief's car = $192.5 - 42.5 = 150 \ m/s$

111 (b)

$$v = u + a t$$

$$2 \times 100 = 100 + 10t$$
 or $t = 10$ s

112 (b)

Bullet will take $\frac{100}{1000} = 0.1 \, sec$ to reach target.

During this period vertical distance (downward) travelled by the bullet = $\frac{1}{2}gt^2 = \frac{1}{2} \times 10 \times 10^{-2}$

$$(0.1)^2 m = 5cm$$

So the gun should be aimed 5 cm above the target

113 (a)

Average velocity = $\frac{2 \times 8 \times 12}{8 + 12}$ ms⁻¹ = 9.6ms⁻¹

114 **(**a)

$$s = \frac{1}{2}gt^2, v = \frac{1}{2}g \times 2t = gt$$

115 (b)

Average speed is the ratio of distance to time taken

Distance travelled from 0 to 5s = 40 m

Distance travelled from 5 to 10s = 0 m

Distance travelled from 10 to 15s = 60 m

Distance travelled from 15to 20s = 20

So, total distance = 40 + 0 + 60 + 20 = 120 m

Total time taken = 20 minutes

Hence, average speed

$$= \frac{\text{distance travelled } (m)}{\text{time (min)}} = \frac{120}{20} = 6 \text{ m/min}$$

116 (c)

From given figure, it is clear that the net displacement is zero. So average velocity will be zero

117 (d)

$$v = \sqrt{2 gh} \qquad \dots (i)$$

After rebounce, $v^2 = u^2 - 2gh$

Or
$$u^2 = v^2 + 2 gh'$$

:
$$u^2 = 2 gh'$$
 ... (ii)

$$\therefore \frac{v^2}{u^2} = \frac{2gh}{2gh'}$$

Or
$$h' = h \times \frac{u^2}{v^2}$$

$$= h \times \left(\frac{80}{100}\right)^2 = 0.64 \, h$$

118 (b)

In this problem point starts moving with uniform acceleration a and after time t (Position B) the direction of acceleration get reversed i.e. the retardation of same value works on the point. Due to this velocity of points goes on decreasing and at position C its velocity becomes zero. Now the direction of motion of point reversed and it moves from C to A under the effect of acceleration a. We have to calculate the total time in this motion. Starting velocity at position A is equal to zero. Velocity at position $B \Rightarrow v = at \ [As \ u = 0]$

$$\overline{A}$$
 \overline{B} \overline{C}

Distance between A and B, $S_{AB} = \frac{1}{2}at^2$

As same amount of retardation works on a point and it comes to rest therefore

$$S_{BC} = S_{AB} = \frac{1}{2}a t^2$$

 $S_{AC} = S_{AB} + S_{BC} = a t^2$ and time required to cover this distance is also equal to t.

 \therefore Total time taken for motion between A and C

Now for the return journey from C to A ($S_{AC} = at^2$)

$$S_{AC}=u\,t+\frac{1}{2}at^2\Rightarrow at^2=0+\frac{1}{2}at_1^2\Rightarrow t_1=\sqrt{2}t$$

Hence total time in which point returns to initial point

$$T = 2t + \sqrt{2}t = (2 + \sqrt{2})t$$

119 (c)

$$t = \sqrt{\frac{2h}{(g+a)}} = \sqrt{\frac{2 \times 2.7}{(9.8+1.2)}} = \sqrt{\frac{5.4}{11}} = \sqrt{0.49}$$
$$= 0.7 \text{ sec}$$

As u = 0 and lift is moving upward with acceleration

120 (d)

Man walks from his home to market with a speed of 5 km/h. Distance= 2.5 km and time = $\frac{d}{v} = \frac{2.5}{5} =$

 $\frac{1}{2}$ hr and he returns back with speed of 7.5 km/h in rest of time of 10 minutes

Distance =
$$7.5 \times \frac{10}{60} = 1.25 \text{ km}$$

So, Average speed =
$$\frac{\text{Total distance}}{\text{TOtal time}}$$

= $\frac{(2.5 + 1.25)km}{(40/60)hr} = \frac{45}{8} \frac{km}{hr}$

As
$$v^2 = v^2 - 2as \Rightarrow u^2 = 2as \ (\because v = 0)$$

$$\Rightarrow u^2 \propto s \Rightarrow \frac{u_2}{u_1} = \left(\frac{s_2}{s_1}\right)^{1/2}$$

$$\Rightarrow u_2 = \left(\frac{9}{4}\right)^{\frac{1}{2}} u_1 = \frac{3}{2} u_1 = 300m/s$$

$$\int_{0}^{x} dx = \int_{0}^{1} (v_0 + gt + ft^2) dt$$
$$x = v_0 + g\left(\frac{1}{2}\right) + f\left(\frac{1}{2}\right)$$

123 (d)

Let the car accelerate at rate α for time t_1 then maximum velocity attained,

$$v = 0 + at_1 = at_1$$

Now, the car decelerates at a rate β for time $(t - t_1)$ and finally comes to rest. Then,

$$0 = v - \beta(t - t_1) \Rightarrow 0 = \alpha t_1 - \beta t + \beta t_1$$

$$\Rightarrow t_1 = \frac{\beta}{\alpha + \beta} t$$

$$\therefore v = \frac{\alpha\beta}{\alpha + \beta}t$$

124 (b)

$$a = \sqrt{a_x^2 + a_y^2}$$

$$= \left[\left(\frac{d^2 x}{dy} \right)^2 + \left(\frac{d^2 y}{dt^2} \right)^2 \right]^{\frac{1}{2}}$$

Here,
$$\frac{d^2y}{dx^2} = 0$$

Hence,
$$a = \frac{d^2x}{dt^2} = 8\text{ms}^{-2}$$

125 (a)

Let t_1 and t_2 be times taken by the car to go from X to Y and then from Y to X respectively.

Then,
$$t_1 + t_2 = \frac{XY}{v_u} + \frac{XY}{v_d} = XY \left(\frac{v_u + u_d}{v_u v_d}\right)$$

Total distance travelled

$$= XY + XY = 2XY$$

Therefore, average speed of the car for this round trip is

$$Average speed = \frac{distance travelled}{time taken}$$

$$v_{\text{av}} = \frac{2 XY}{XY \left(\frac{v_u + v_d}{v_u + v_d}\right)} \text{ or } v_{\text{av}} = \frac{2v_u v_d}{v_u + v_d}$$

126 (d)

Stopping distance $s \propto u^2$

$$\Rightarrow \frac{s_2}{40} = \left(\frac{90 \times \frac{5}{18}}{50 \times \frac{5}{18}}\right)^2$$

$$\Rightarrow$$
 $s_2 = 129.6 \text{ m}$

$$S \propto t^2 \Rightarrow \frac{S_1}{S_2} = \left(\frac{10}{20}\right)^2 \Rightarrow S_2 = 4S_1$$

128 (b

$$\int_{6.25}^{0} \frac{dv}{\sqrt{v}} = -2.5 \int_{0}^{t} dt$$

$$\left|2\sqrt{v}\right|_{6.25}^{0} = -2.5t$$

$$2\sqrt{6.25} = 2.5t$$

$$t = 2sec$$

$$\frac{1}{2}at^2 = vt \Rightarrow t = \frac{2v}{a}$$

130 (d)

Acceleration due to gravity is independent of mass of body

131 (b)

$$v = u + at$$

$$\Rightarrow$$
 $-2 = 10 + a \times 4$

$$\therefore \quad a = -3 \text{ ms}^{-2}$$

132 (c)

Acceleration =
$$a = \frac{dv}{dt} = 0.1 \times 2t = 0.2t$$

Which is time dependent i.e. non-uniform acceleration

133 (c)

Since acceleration due to gravity is independent of mass, hence time is also independent of mass (or density) of object

134 (b)

Time of ascent = $\frac{u}{a}$ = 6 sec $\Rightarrow u = 60m/s$

Distance in first second $h_{\rm first} = 60 - \frac{g}{2}(2 \times 1 -$

1) = 55m

Distance in seventh second will be equal to the distance in first second of vertical downward

 $h_{\text{seventh}} = \frac{g}{2}(2 \times 1 - 1) = 5 \text{ m} \Rightarrow h_{\text{first}}/h_{\text{seventh}}$

135 (b)

$$x = a + bt^2, v = \frac{dx}{dt} = 2bt$$

Instantaneous velocity $v = 2 \times 3 \times 3 = 18 \, cm/$

136 (d)

$$u = \sqrt{2gh} = \sqrt{2 \times 10 \times 20} = 20m/s$$

and $T = \frac{2u}{g} = \frac{2 \times 20}{10} = 4 \ sec$

137 (c)

If a stone is dropped from height h then

$$h = \frac{1}{2}gt^2 \qquad ...(i$$

if a stone is thrown upward with velocity u then

$$h = -u t_1 + \frac{1}{2}gt_1^2$$
 ...(ii)

If a stone is thrown downward with velocity *u*

$$h = ut_2 + \frac{1}{2}gt_2^2$$
 ...(iii)

From (i) (ii) and (iii) we get

$$-ut_1 + \frac{1}{2}gt_1^2 = \frac{1}{2}gt^2 \qquad ...(iv)$$

$$ut_2 + \frac{1}{2}gt_2^2 = \frac{1}{2}gt^2$$
 ...(v)

Dividing (iv) and (v) we get

$$\therefore \frac{-ut_1}{ut_2} = \frac{\frac{1}{2}g(t^2 - t_1^2)}{\frac{1}{2}g(t^2 - t_2^2)}$$

$$Or - \frac{t_1}{t_2} = \frac{t^2 - t_1^2}{t^2 - t_2^2}$$

By solving $t = \sqrt{t_1 t_2}$

138 (d)

$$3t = \sqrt{3x} + 6 \Rightarrow 3x = (3t - 6)^{2}$$

$$\Rightarrow x = 3t^{2} - 12t + 12$$

$$v = \frac{dx}{dt} = 6t - 12, \text{ for } v = 0, t = 2 \text{ sec}$$

$$x = 3(2)^{2} - 12 \times 2 + 12 = 0$$

139 (b)

Let the total distance travelled by the body is 2S. If $\begin{vmatrix} 144 & \mathbf{d} \end{vmatrix}$ t1 is the time taken by the body to travel first half of the distance, then

$$t_1 = \frac{S}{2}$$

Let t_2 be the time taken by the body for each time interval for the remaining half journey.

$$S = 3t_2 + 5t_2 = 8t_2$$

So, average speed $=\frac{\text{Total distance travelled}}{\pi}$

$$= \frac{2S}{t_1 + 2t_2} = \frac{2S}{\frac{S}{2} + \frac{S}{4}} = \frac{8}{3} \,\text{ms}^{-1}$$

140 (a)

Displacement = Area of upper trapezium- Area of lower trapezium

$$= \frac{1}{2}(2+4) \times 4 - \frac{1}{2}(2+4)2 = 12 - 6 = 6m$$

141 (d)

$$S = 3 - 4t + 5t^2$$

Velocity
$$\frac{ds}{dt} = -4 + 10 t$$

Hence, initial velocity will be

$$\left| u = \frac{ds}{dt} \right|_{t=0} = -4 \text{ unit}$$

Slope of displacement time graph is negative only at point time E

143 (c)

Assume that the motion is along the positive direction of x-axis. For simplicity, let us take the beginning of the braking to be a t time t = 0, at position x_0

Therefore, $x - x_0 = v_0 \left(\frac{v - v_0}{a} \right) + \frac{1}{2} a \left(\frac{v - v_0}{a} \right)^2$

Solving for a and substituting known data then

$$a = \frac{v^2 - v_0}{2(x - x_0)}$$

Here, $v_0 = 100 \mathrm{kmh^{-1}} = 27.78 \mathrm{ms^{-1}}$, $x - x_0 =$

And
$$v = 80 \text{kmh}^{-1} = 22.22 \text{m}^{-1}$$

$$\therefore \ a = \frac{(22.22)^2 - (27.78)^2}{2(88.0)}$$

=-1.58ms⁻²

O is the observation point at the ground. A and B are the positions of aircraft for which $\angle AOB = 30^{\circ}$. Time taken by aircraft from A to B is 10s ΔAOB

$$\tan 30^{\circ} = \frac{AB}{3400}$$

$$AB = 3400 \tan 30^{\circ} = \frac{3400}{\sqrt{3}}m$$

: Speed of aircraft,

$$v = \frac{AB}{10} = \frac{3400}{10\sqrt{3}} = 196.3 \, ms^{-1}$$

145 (a)

$$h = ut - \frac{1}{2}gt^2 \Rightarrow 96 = 80t - \frac{32}{2}t^2$$

 $\Rightarrow t^2 - 5t + 6 = 0 \Rightarrow t = 2sec \text{ or } 3 sec$

146 (a)

At time t

Velocity of A, $v_A = u - gt$ upward Velocity of B, $v_B = gt$ downward

It we assume that height h is smaller than or equal to the maximum height reached by A, then at every instant v_A and v_B are in opposite directions

147 (a)

= u

Displacement = $(2 \times 4 - 2 \times 2 + 2 \times 4) = 12m$ = $2 \times 4 + 2 \times 2 + 2 \times 4 = 20m$

149 **(b)** $v^2 = u^2 + 2gh$

$$v^{2} = u^{2} + 2gh \Rightarrow (3u)^{2} = (-u)^{2} + 2gh \Rightarrow h$$
$$= \frac{4u^{2}}{a}$$

150 **(d)** $a = \frac{dv}{dt} = \frac{dv}{dx}\frac{dx}{dt} = v\frac{dv}{dx} = -\alpha x^2 \text{ [Given]}$

$$\Rightarrow \int_{v_0}^{0} v dv = \alpha \int_{0}^{S} x^2 dx \Rightarrow \left[\frac{v^2}{2} \right]_{v_0}^{0} = -\alpha \left[\frac{x^3}{3} \right]_{0}^{S}$$
$$\Rightarrow \frac{v_0^2}{2} = \frac{\alpha S^3}{3} \Rightarrow S = \left(\frac{3v^2}{2\alpha} \right)^{\frac{1}{3}}$$

151 (a)

$$h = ut + \frac{1}{2}gt^2$$

$$\therefore \quad 30 = -25t + \frac{10}{2}t^2$$

Or
$$t^2 - 5t - 6 = 0$$

Or
$$(t-6)(t+1) = 0$$

$$t = 6 s$$

152 (d)

$$x = 8 + 12t + t^{3}$$

$$v = 0 + 12 - 3t^{2} = 0$$

$$3t^{2} = 12$$

$$t = 2 sec$$

$$a = \frac{dv}{dt} = 0 - 6t$$

$$a[t=2] = -12 \, m/s^2$$

Retardation = $12 m/s^2$

153 (d)

$$(S' \propto t^2$$
. Now, $S'_1: S'_2: S'_3: \frac{1}{4}: 1: \frac{9}{4}$ or 1:4:9

For successive intervals,

$$S_1: S_2: S_3 :: 1: (4-1): (9-4)$$

or $S_1: S_2: S_3 :: 1: 3: 5$

154 (b)

For vertically upward motion, $h_1 = v_0 t - \frac{1}{2}gt^2$ and for vertically downward motion, $h_2 = v_0 t + \frac{1}{2}gt^2$

∴ Total distance covered in $t \sec h = h_1 + h_2$ = $2v_0t$

155 (a)

An aeroplane files 400 m north and 300 m south so the net displacement is 100 m towards north Then it files 1200 m upwards so r =

$$\sqrt{(100)^2 + (1200)^2}$$

$$= 1204 m \simeq 1200 m$$

The option should be $1204 \, m$, because this value mislead one into thinking that net displacement is in upward direction only

156 (a)

$$b - a = un + \frac{1}{2}An^{2}$$

$$2b - 2a = 2un + An^{2}$$

$$t = 0 \quad t = n \quad t = 2n$$

$$| - a - - |$$

Again,
$$c - a = u(2n) + \frac{1}{2}A(2n)^2$$

Subtracting, $c - a - 2b + 2a = An^2$

$$A = \frac{c - 2b + a}{n^2}$$

(i) The displacement of the main from A to E is $\Delta x = x_2 - x_1 = 7m - (-8m) = +15m$ directed in the positive x-direction

(ii) The displacement of the man from E to C is $\Delta x = -3m - (7m) = -10m$ directed in the negative x-direction

(iii) The displacement of the man from B to D is $\Delta x = 3m - (-7m) = +10m$ directed in the positive x-axis

158 (a)

For the given condition initial height h = d and velocity of the ball is zero. When the ball moves downward its velocity increases and it will be maximum when the ball hits the ground & just after the collision it becomes half and in opposite direction. As the ball moves upward its velocity again decreases and becomes zero at height d/2. This explanation match with graph (A)

159 (c)

$$y = a + bt + ct^2 - dt^4$$

$$\therefore v = \frac{dy}{dt} = b + 2ct - 4dt^3 \text{ and } a = \frac{dv}{dt} = 2c - 12dt^2$$

Hence, at t = 0, $v_{initial} = b$ and $a_{initial} = 2c$

160 (a)

For first marble, $h_1 = \frac{1}{2}g \times 16 = 8g$

For second marble, $h_2 = \frac{1}{2}g \times 9 = 4.5g$

For third marble, $h_3 = \frac{1}{2}g \times 4 = 2g$

For fourth marble, $h_4 = \frac{1}{2}g \times 1 = 0.5g$

$$\therefore h_1 - h_2 = 8g - 4.5g = 3.5g = 35m.$$

$$h_2 - h_3 = 4.5g - 2g = 2.5g = 25m$$
 and

$$h_3 - h_4 = 2g - 0.5g = 1.5g = 15m$$

$$S_n = u + \frac{a}{2}(2n-1) = \frac{a}{2}(2n-1)$$
 because $u = 0$

Hence $\frac{S_4}{S_2} = \frac{7}{5}$

162 (a)

From figure, $V_B \sin \theta = V_W$

$$\sin \theta = \frac{V_W}{V_B} = \frac{1}{2} \Rightarrow \theta = 30^{\circ} \quad [\because V_B = 2V_W]$$

Time taken to cross the river,

$$t = \frac{D}{V_B \cos \theta} = \frac{D}{V_B \cos 30^\circ} = \frac{2D}{V_B \sqrt{3}}$$

163 (c)

For same direction relative velocity = $|v_1 - v_2|$

Distance covered,
$$d = \frac{(v_1 - v_2)^2}{2a}$$

For no collision, $d > \frac{(v_1 - v_2)^2}{2a}$

164 (b)

The velocity time graph for given problem is shown in the figure.

Distance travelled S =Area under curve = 2 +2 = 4m

165 (c)

Let initial velocity of body at point A is v, AB is 3

From $v^2 = u^2 - 2as$

$$\left(\frac{v}{2}\right)^2 = v^2 - 2a \times 3$$

$$a = \frac{v^2}{8}$$

Let on penetrating 3 cm in a wooden block, the body moves x distance form B to C.

So, for B to C

$$u = \frac{v}{2}, v = 0,$$

$$s = x, a = \frac{v^2}{8}$$
 (deceleration)

$$\therefore (0)^2 = \left(\frac{v}{2}\right)^2 - 2 \cdot \frac{v^2}{8} \cdot x$$
$$x = 1$$

166 (c)

Mass does not affect maximum height

 $H = \frac{u^2}{2g} \Rightarrow H \propto u^2$, So if velocity is doubled then height will become four times.i.e. $H = 20 \times 4 = 20$

167 (c)

Given,
$$s = 2 \text{ m}, u = 80 \text{ ms}^{-1}, v = 0$$

From
$$v^2 = u^2 - 2as$$

$$(0)^2 = (80)^2 - 2 \times a \times 2$$

Or
$$a = \frac{80 \times 80}{4} = 1600 \text{ ms}^{-2}$$

168 (c)

Instantaeneous velocity = $v = \frac{\Delta x}{\Delta t}$

By using the data from the table

$$v_1 = \frac{0 - (-2)}{1} = 2m/s, \quad v_2 = \frac{6 - 0}{1} = 6m/s$$

 $v_3 = \frac{16 - 6}{1} = 10m/s$

So, motion is non-uniform but accelerated

169 (c)

Average velocity is defined as the displacement divided by time.

In the given graph, displacement is zero.

Hence, Average velocity
$$=\frac{\text{total displacement}}{\text{total time}}=\frac{0}{t}=0$$

170 (c)

Let body reaches the ground in t sec.

 \therefore Velocity of body after (t-2) sec from equation of motion.

$$v = u + gt'$$

And
$$t' = t - 2$$

$$\therefore v = g(t-2)$$

Distance covered in last two sec

$$h' = g(t-2) \times 2 + \frac{1}{2}g(2)^2$$

$$60 = 20(t-2) + 20$$

Or
$$t = 4 \text{ s}$$

Hence, height of tower is given buy

$$h=ut+\frac{1}{2}\mathrm{g}t^2$$

$$h = \frac{1}{2} \operatorname{gt}^2 [:: u = 0]$$

$$=\frac{1}{2} \times 10 \times (4)^2 = 80 \text{ m}.$$

171 (a)

$$x = \frac{1}{2}gt^2$$
, $100 - x = 25x - \frac{1}{2}gt^2$;

Adding 25t = 100 or t = 4 s

172 (d

$$S \propto u^2 \Rightarrow \frac{S_1}{S_2} = \left(\frac{1}{4}\right)^2 = \frac{1}{16}$$

173 **(b)**

Speed can never be negative. Hence (b) is correct.

174 (d

$$x = 8 + 12t + t^3$$

$$v = 0 + 12 - 3t^2 = 0$$

$$3t^2 = 12$$

$$t = 2 sec$$

$$a = \frac{dv}{dt} = 0 - 6t$$

$$a[t = 2] = -12 \, m/s^2$$

Retardation = $12 m/s^2$

175 (d)

$$u = 72 \, kmph = 20 \, m/s, v = 0$$

By using
$$v^2 = u^2 - 2as \Rightarrow a = \frac{u^2}{2s} = \frac{(20)^2}{2 \times 200} = \frac{1}{2}$$

1 m/s

176 (a)

$$S_1 = \frac{1}{2}ft^2$$
, $S_2 = -v_0t - \frac{1}{2}gt^2$, Clearly, $(S_1 - S_2) \propto t$

177 (a)

$$\tan(90^{\circ} - \theta) = \frac{20}{15}$$

$$\therefore \cot \theta = \frac{20}{15} = \frac{4}{3}$$

$$\Rightarrow \theta = 37^{\circ}$$

$$\therefore \theta = 37^{\circ} + 23^{\circ}$$

$$= 60^{\circ}$$

178 (a)

Let us calculate relative deceleration by considering relative velocity

Using,
$$v^2 - u^2 = 2aS$$
, $0^2 - 80^2 = 2 \times a \times 2000$
or $a = -\frac{80 \times 80}{4000} = -\frac{64}{40} \text{ms}^{-2} = -1.6 \text{ms}^{-2}$

Deceleration of each train is $\frac{1.6}{2}$ ms⁻² ie, 0.8 ms⁻²

179 (b)

The time of fall is independent of the mass

180 (c)

Distance travelled by the particle is $x = 40 + 12t - t^3$

We know that, speed is rate of change of distance i.e.

$$v = \frac{dx}{dt}$$

$$\therefore v = \frac{d}{dt}(40 + 12t - t^3) = 0 + 12 - 3t^2$$

But final velocity v = 0

$$\therefore 12 - 3t^2 = 0$$

$$\Rightarrow t^2 = \frac{12}{3} = 4 \Rightarrow t = 2s$$

Hence, distance travelled by the particle before coming to rest is given by

$$x = 40 + 12(2) - (2)^3 = 40 + 24 - 8 = 64 - 8$$

= 56m

181 (a)

Slope of velocity-time graph measures acceleration. For graph (a) slope is zero. Hence $a=0\ i.e.$ motion is uniform

182 (c)

Initial velocity $u = \tan 45^\circ = 1$ Velocity after 2s, $v = \tan 60^\circ = \sqrt{3}$

 \therefore Average acceleration, $a_{av} = \frac{v-u}{t} = \frac{\sqrt{3}-1}{2}$.

183 (c)

Distance covered by bus in 100 s

$$= 100 \times 10 = 1000 \text{ m}$$

Distance to be covered by scooterist

$$= 1000 + 1000 = 2000 \,\mathrm{m}$$

 $\therefore \text{ Speed of scooterist} = \frac{2000}{100} = 20 \text{ ms}^{-1}$

184 (b)

$$\vec{v} = \vec{u} + \vec{a}t$$

$$v = (2\hat{\imath} + 3\hat{\jmath}) + (0.3\hat{\imath} + 0.2\hat{\jmath}) \times 10$$

$$= 5\hat{\imath} + 5\hat{\jmath}$$

$$|\vec{v}| = 5\sqrt{2}$$

185 (a)

Height reached = $\frac{1}{2} \times 132 \times 1200$ m= 66×1200 m

186 (d)

Since $x = 1.2t^2$ which is in form $x = \frac{1}{2}at^2$

Thus the motion is uniformly accelerated

189 (d)

Let the body after time t/2 be at x from the top, then

$$x = \frac{1}{2}g\frac{t^2}{4} = \frac{gt^2}{8}$$
 ... (i)
 $h = \frac{1}{2}gt^2$... (ii)

Eliminate *t* from (i) and (ii), we get $x = \frac{h}{4}$

 \therefore Height of the body from the ground = $h - \frac{h}{4} =$

4

190 (a)

Average speed
$$\bar{v} = \frac{\text{Total distance travelled}}{\text{Total time taken}}$$

$$= \frac{8.4km + 2km}{t_1 + t_2} = \frac{10.4 \text{ km}}{\left(\frac{8.4 \text{ km}}{70 \text{ km/h}}\right) + \frac{1}{2}h}$$

$$= \frac{10.4 \text{ km}}{0.12h + 0.5h} = 16.8 \text{ km/h}$$

191 (c)

Vertical component of velocities of both the balls are same and equal to zero. So $t=\sqrt{\frac{2h}{g}}$

192 (a)

After balling out from point *A* parachutist falls freely under gravity. The velocity acquired by it will 'v'

From
$$v^2 = u^2 + 2as = 0 + 2 \times 9.8 \times 50 = 980$$

[As $u = 0$, $a = 9.8m/s^2$, $s = 50 m$]

At point B, parachute opens and it moves with retardation of $2 m/s^2$ and reach at ground (point C) with velocity of 3 m/s

For the part 'BC' by applying the equation $v^2 =$

$$v = 3m/s, u = \sqrt{980} \ m/s, a = -2m/s^2, s = h$$

$$\Rightarrow (3)^2 = (\sqrt{980})^2 + 2 \times (-2) \times h \Rightarrow 9$$

$$= 980 - 4h$$

$$\Rightarrow h = \frac{980 - 9}{4} = \frac{971}{4} = 242.7 \approx 243 \ m$$

So, the total height by which parachutist bail out = 50 + 243 = 293 m

193 (c)

$$v = \frac{dx}{dt} = 0 + 12t - 3t^2 = 0$$

 $\Rightarrow t = 2 \text{ s}$

Hence, distance travelled by the particle before coming to rest is given by

$$x = 40 + 12(2) - (2)^{3}$$
$$= 40 + 24 - 8 = 64 - 8$$
$$= 56 \text{ m}$$

194 (a)

$$\vec{r} = 20\hat{\imath} + 10\hat{\jmath} : r = \sqrt{20^2 + 10^2} = 22.5 m$$

Because acceleration due to gravity is constant so the slope of line will be constant i.e., velocity time curve for a body projected vertically upwards is straight line

196 (a)

$$\sqrt{x} = t + 1$$
Squaring both sides, we get
$$x = (t + 1)^2 = t^2 + 2t + 1$$

195 (d)

Differentiating it w.r.t time t, we get

$$\frac{dx}{dt} = 2t + 2$$
Velocity, $v = \frac{dx}{dt} = 2t + 2$

Velocity,
$$v = \frac{1}{dt} = 2t + \frac{1}{2}$$

$$A \Rightarrow \frac{u^2}{4} - u^2 = -2gh_1$$

$$B \Rightarrow \frac{u^2}{9} - u^2 = -2gh_2$$

$$C \Rightarrow \frac{u^2}{16} - u^2 = -2gh_3$$

$$\begin{pmatrix} u \\ h_3 \end{pmatrix} \begin{pmatrix} u \\ h_2 \end{pmatrix} \begin{pmatrix} u \\ h_1 \end{pmatrix} \begin{pmatrix} u \\ h_1 \end{pmatrix} \begin{pmatrix} u \\ u \end{pmatrix}$$

$$\therefore AB = \frac{u^2}{2g} \left\{ \frac{8}{9} - \frac{3}{4} \right\} = \frac{u^2}{2g} \cdot \frac{5}{36}$$

$$BC = \frac{u^2}{2g} \left\{ \frac{15}{16} - \frac{8}{9} \right\} = \frac{u^2}{2g} \cdot \frac{7}{144}$$

$$\therefore \frac{AB}{BC} = \frac{5}{36} \times \frac{144}{7} = \frac{20}{7}$$

198 (b)

Let the particle moves toward right with velocity 6 m/s. Due to retardation after time t_1 its velocity becomes zero

$$C \stackrel{\longleftarrow}{\longleftarrow} t_1 \stackrel{\longrightarrow}{\longrightarrow} A$$

$$C \stackrel{\longleftarrow}{\longleftarrow} t_1 \stackrel{\longrightarrow}{\longrightarrow} A$$

From $v = u - at \Rightarrow 0 = 6 - 2t_1 \Rightarrow t_1 = 3sec$ But retardation work on it for 4 sec. It means after reaching point A direction of motion get reversed and acceleration works on the particle for next

$$S_{OA} = ut_1 - \frac{1}{2}at_1^2 = 6 \times 3 - \frac{1}{2}(2)(3)^2 = 18 - 9 = 0$$

$$S_{AB} = \frac{1}{2} \times 2 \times (1)^2 = 1m$$

$$\therefore S_{BC} = s_{oa} - s_{aB} = 9 - 1 = 8m$$

Now velocity of the particle at pint B in return journey $v = 0 + 2 \times 1 = 2m/s$

In return journey from B to C, particle moves with constant velocity 2m/s to cover the distance 8m.

Time taken =
$$\frac{\text{Distance}}{\text{Velocity}} = \frac{8}{2} = 4 \text{ sec}$$

Total time taken by particle to return at point *O* is $\Rightarrow T = t_{OA} + t_{AB} + t_{BC} = 3 + 1 + 4 = 8 sec$

199 **(b)**
$$v^2 = u^2 + 2as$$

$$a = \frac{v^2 - u^2}{2s} = \frac{(20)^2 - (10)^2}{2 \times 135} = \frac{300}{270} = \frac{10}{9} m/s^2$$

From first equation of motion

$$v = u + at \Rightarrow t = \frac{v - u}{a} = \frac{20 - 10}{10/9} = \frac{10}{10/9}$$

= 9 sec

200 (b)

$$u = 0, v = 180 \, km \, h^{-1} = 50 \, ms^{-1}$$

Time taken t = 10s

$$a = \frac{v - u}{t} = \frac{50}{10} = 5 \ ms^{-2}$$

 \therefore Distance covered $S = ut + \frac{1}{2}at^2$

$$= 0 + \frac{1}{2} \times 5 \times (10)^2 = \frac{500}{2} = 250 \ m$$

201 (a)

$$v = 18 \times \frac{5}{18} \text{ms}^{-1} = 5 \text{ms}^{-1}$$
,

$$h_{\text{max}} = \frac{5 \times 5}{2 \times 10} \text{m} = \frac{25}{20} \text{m} = 1.25 \text{m}$$

202 (c)

Let the stone falls through a height h in t s

Here, u = 0, a = g

Using
$$D_n = u + \frac{a}{2}(2n-1)$$

Distance travelled by the stone in the last second

is

$$\frac{9h}{25} = \frac{g}{2}(2t - 1) \quad [\because u = 0]$$
 ...(i)

Distance travelled by the stone in t s is

$$h = \frac{1}{2} gt^2$$
 [: $u = 0$] ...(ii)

Divide (i) by (ii), we get

$$\frac{9}{25} = \frac{(2t-1)}{t^2}$$

$$9t^2 = 50t - 25$$

$$9t^2 - 50t + 25 = 0$$

On solving, we get

$$t = 5s$$
 or $t = \frac{5}{9}s$

Substituting t = 5s in (ii), we get

$$h = \frac{1}{2} \times 9.8 \times (5)^2 = 122.5 m$$

204 (a)

Let the speed of trains be x

$$\therefore \frac{x-u}{x+u} = \frac{1}{2} \Rightarrow 2x - 2u = x + u \Rightarrow x = 3u$$

205 (a)

Given that u = 0 (the electron starts from rest),

At any time v = kt = 2t

$$a = \frac{du}{dt} = 2\text{ms}^{-1}$$
(Constant acceleration)

Now
$$s = ut + \frac{1}{2}at^2$$

$$=0\times 3+\frac{1}{2}\times 2\times (3)^2$$

$$=9m$$

206 (d)

$$\frac{v_A}{v_B} = \frac{\tan \theta_A}{\tan \theta_B} = \frac{\tan 30^\circ}{\tan 60^\circ} = \frac{1/\sqrt{3}}{\sqrt{3}} = \frac{1}{3}$$

207 (d)

Interval of ball throw = 2sec

If we want that minimum three (more than two) ball remain in air then time of flight of first ball

must be greater than 4 sec

m . .

$$\frac{2u}{g} > 4 \sec \Rightarrow u > 19.6 \, m/s$$

For u = 19.6, first ball will just about to strike the ground (in air)

Second ball will be at highest point (in air)

Third ball will be at point of projection or at ground (not in air)

208 (c)

 $S_n \propto (2n-1)$. In equal time interval of 2 *seconds* Ratio of distance = 1:3:5

209 (d)

$$\vec{\mathbf{v}}_{\mathrm{man}} = \frac{\mathbf{v}}{\sqrt{2}} \hat{\mathbf{i}} + \frac{\mathbf{v}}{\sqrt{2}} \hat{\mathbf{j}}$$

Let $\vec{\mathbf{v}}_{\text{wind}} = a\hat{\mathbf{i}} + b\hat{\mathbf{j}}$

$$\Rightarrow \vec{v}_{wind/man} = \left(a - \frac{v}{\sqrt{2}}\right)\hat{i} + \left(b - \frac{v}{\sqrt{2}}\right)\hat{j}$$

$$\Rightarrow \tan \theta = \frac{b - \frac{v}{\sqrt{2}}}{a - \frac{v}{\sqrt{2}}} = \tan 270^{\circ}$$

$$\Rightarrow a - \frac{v}{\sqrt{2}} = 0$$

$$\Rightarrow a = \frac{v}{\sqrt{2}} \Rightarrow \vec{v}_{wind} = \frac{v}{\sqrt{2}}\hat{i} + b\hat{j}$$

when the man doubles his speed

$$\vec{\mathbf{v}}_{\text{man}}' = 2\left(\frac{v}{\sqrt{2}}\hat{\mathbf{i}} + \frac{v}{\sqrt{2}}\hat{\mathbf{j}}\right) = \sqrt{2}\left(v\hat{\mathbf{i}} + v\hat{\mathbf{j}}\right)$$

$$\Rightarrow \vec{v}'_{\text{wind/man}} = \left(\frac{v}{\sqrt{2}} - \sqrt{2}v\right)\hat{i} + (b - \sqrt{2}v)\hat{j}$$

$$\Rightarrow \tan \theta' = \frac{b - \sqrt{2}}{\frac{v}{\sqrt{2} - \sqrt{2}v}} = \frac{2v - \sqrt{2}b}{v}$$

But $\theta' = 270^{\circ} - \cot^{-1}(2)$

$$\Rightarrow \tan [270^{\circ} - \cot^{-1}(2)] = \frac{2v - \sqrt{2b}}{v}$$

$$\Rightarrow \cot[\cot^{-1}(2)] = \frac{2v - \sqrt{2b}}{v}$$

$$\Rightarrow 2v = 2v - \sqrt{2b} = b = 0$$

$$\vec{v}_{wind} = \frac{v}{\sqrt{2}} \hat{i}$$

210 (a)

$$v_{\rm rel} = 45 + 36 = 81 \,\mathrm{kmh^{-1}} = 81 \times \frac{5}{18} \,\mathrm{ms^{-1}}$$

$$s_{\text{rel}} = v_{\text{rel}} \times t = 81 \times \frac{5}{18} \times (5 \times 60)$$

= $\frac{81 \times 5 \times 5 \times 60}{18} - 6750 \text{ m}$
= 6.75 km

211 (b)

The velocity of balloon at height $h, v = \sqrt{2\left(\frac{g}{8}\right)}h$ When the stone released from this balloon, it will go upward with velocity, $=\frac{\sqrt{gh}}{2}$ (Same as that of

go upward with velocity, $=\frac{\sqrt{2}}{2}$ (Same as that of balloon). In this condition time taken by stone to reach the ground

$$t = \frac{v}{g} \left[1 + \sqrt{1 + \frac{2gh}{v^2}} \right] = \frac{\sqrt{gh/2}}{g} \left[1 + \frac{2gh}{gh/4} \right]$$
$$= \frac{2\sqrt{gh}}{g} = 2\sqrt{\frac{h}{g}}$$

212 (d)

$$u = \sqrt{2gh} = \sqrt{2 \times 10 \times 20} = 20m/s$$

and $T = \frac{2u}{g} = \frac{2 \times 20}{10} = 4 \ sec$

213 **(b)**

Distance travelled by train in first 1 hour is 60 km and distance in next 1/2 hour is 20 km. So Average speed = $\frac{\text{Total distance}}{\text{Total time}} = \frac{60+20}{3/2}$

 $= 53.33 \, km/hour$

214 (b)

Time average velocity = $\frac{v_1 + v_2 + v_3}{3} = \frac{3 + 4 + 5}{3} = 4m/s$

215 (b)

Between time interval 20 sec to 40 sec, there is non-zero acceleration and retardation. Hence distance travelled during this interval = Area between time interval 20 sec to 40 sec = $\frac{1}{2} \times 20 \times 3 + 20 \times 1 = 30 + 20 = 50 m$

216 (d)

Initial velocity of balloon with respect to ground $v = 10 + 5 = 15 \, m/sec$ upward

After 2 seconds its velocity, v = u - gt $= 15 - 10 \times 2 = -5 \, m/sec = 5 \, m/sec$ (downward)

217 (a)

If t_1 and $2t_2$ are the time taken by particle to cover first and second half distance respectively

$$t_1 = \frac{x/2}{3} = \frac{x}{6}$$
 ...(i)
 $x_1 = 4.5 t_2 \text{ and } x_2 = 7.5 t_2$

So,
$$x_1 + x_2 = \frac{x}{2} \Rightarrow 4.5 \ t_2 + 7.5 \ t_2 = \frac{x}{2}$$

 $t_2 = \frac{x}{24}$...(ii)

Total time $t = t_1 + 2t_2 = \frac{x}{6} + \frac{x}{12} = \frac{x}{4}$

So, average speed = 4 m/sec

219 (b)

Here $v = 144 \, km/h = 40 m/s$ $v = u + at \Rightarrow 40 = 0 + 20 \times a \Rightarrow a = 2 \, m/s^2$ $\therefore s = \frac{1}{2} at^2 = \frac{1}{2} \times 2 \times (20)^2 = 400 \, m$

220 (a)

This graph shows uniform motion because line having a constant slope

221 (a)

As the train are moving in the same direction. So the initial relative speed (v_1-v_2) and by applying retardation final relative speed becomes zero

From
$$v = u - at \Rightarrow 0 = (v_1 - v_2) - at \Rightarrow t = \frac{v_1 - v_2}{a}$$

222 (c)

Here, $s_1 = 40 \text{ m}, s_2 = 65 \text{ m},$

$$t_1 = 5 \text{ s}, \quad a = ?$$

$$a = \frac{s_2 - s_1}{t^2} = \frac{(65 - 40) \times 2}{(5)^2}$$

$$=\frac{50}{25}=2 \text{ ms}^{-2}$$

Now, $s_1 = ut + \frac{1}{2} at^2$

$$40 = 5u + \frac{1}{2} \times 2 \times 25$$

Or 5u = 15 or $u = 3 \text{ ms}^{-1}$

223 (d)

Let height of tower is *h* and body takes *t* time to reach to ground when it fall freely

$$\therefore h = \frac{1}{2}gt^2$$

In last second i.e. t^{th} sec body travels =0.36 h It means in rest of the time i.e. in (t-1)sec it travels

$$= h - 0.36 h = 0.64 h$$

Now applying equation of motion for (t-1)sec

$$0.64 h = \frac{1}{2}g(t-t)^2$$

From (i) and (ii) we get, $t = 5 \sec$ and h = 125m

224 (b)

For downward motion.

$$v^2 = u^2 + 2gh$$

For upward motion,

$$v^2 = u^2 - 2gh$$

The graph will be parabolic in both case. But velocities will be opposite. But speed never be negative.

Hence, (b) is correct.

225 (b)

The ball is thrown vertically upwards, then according to equation of motion.

$$(0)^2 - u^2 = -2gh$$
 ... (i)

And

$$0 = u - gt \qquad \dots (ii)$$

From Eqs. (i) and (ii),

$$h = \frac{gt^2}{2}$$

When the ball is falling downwards after reaching the maximum height

$$s = ut' + \frac{1}{2}g(t')^2$$

$$\frac{h}{2} = (0)t' + \frac{1}{2}g(t')^2$$

⇒

$$t' = \sqrt{\frac{h}{g}}$$

$$t' = \frac{t}{\sqrt{2}}$$

Hence, the total time from the time of projection of reach a point at half of its maximum height while returning = t + t'

$$=t+\frac{t}{\sqrt{2}}=\left(1+\frac{1}{\sqrt{2}}\right)t$$

227 (b)

Let at point *A* initial velocity of body is equal to zero

for path $AB: v^2 = 0 + 2gh$... (i)

for path AC: $(2v)^2 = 0 + 2gx$

 $4v^2 = 2gx$...(ii)

Solving (i) and (ii), x = 4h

$$v = u + at \Rightarrow v = 0 + 5 \times 10 = 50 \text{ m/s}$$

229 **(b)**

Time of ascent = Time of descent=5sec

230 (b)

Region *OA* shows that graph bending toward time axis *i. e.* acceleration is negative.

Region *AB* shows that graph is parallel to time axis *i.e.* velocity is zero. Hence acceleration is zero.

Region *BC* shows that graph is bending towards displacement axis *i. e.* acceleration is positive. Region *CD* shows that graph having constant slope *i. e.* velocity is constant. Hence acceleration is zero

231 **(c)**

$$v_{av} = \frac{2v_1v_2}{v_1 + v_2} = \frac{2 \times 40 \times 60}{100} = 48 \text{ kmph}$$

232 (d)

$$u = at, x = \int u dt = \int at dt = \frac{at^2}{2}$$

For $t = 4 \sec_b x = 8a$

233 (c)

Let car starts from point A from rest moves up to point B \xrightarrow{A} \xrightarrow{B} \xrightarrow{t} \xrightarrow{C} \xrightarrow{D} with \xrightarrow{x} \xrightarrow{x} \xrightarrow{x} \xrightarrow{y} \xrightarrow{x} acceleration f

Velocity of car at point *B*,
$$v = \sqrt{2fS}$$

[As
$$v^2 = u^2 + 2as$$
]

Car moves distance BC with this constant velocity in time t

$$x = \sqrt{2fS}.t$$
 [As $s = ut$] ... (i)

So the velocity of car at point C also will be $\sqrt{2fS}$ and finally car stops after covering distance y

Distance
$$CD \Rightarrow y = \frac{(\sqrt{2fS})^2}{2(f/2)} = \frac{2fS}{f} = 2S$$
 ...(ii)

So, the total distance AD = AB + BC + CD = 15S [Given]

$$\Rightarrow S + x + 2S = 15 S \Rightarrow x = 12S$$

Substituting the value of x in equation (i) we get

$$x = \sqrt{2fS}.t \Rightarrow 12S = \sqrt{2fS}.t \Rightarrow 144S^2 = 2fS.t^2$$

$$\Rightarrow S = \frac{1}{72} ft^2$$

234 (d)

$$v = \alpha \sqrt{x} \Rightarrow \frac{dx}{dt} = \propto \sqrt{x} \Rightarrow \frac{dx}{\sqrt{x}} = \alpha dt$$

By integrating both sides $\int x^{-1/2} dx = \int \alpha dt$

$$\Rightarrow \frac{\sqrt{x}}{1/2} = \alpha t \Rightarrow \sqrt{x} = \frac{1}{2}\alpha t \Rightarrow x = \frac{1}{4}\alpha^2 t^2 : x \propto t^2$$

235 (a)

$$S_n = u + \frac{g}{2}(2n - 1)$$
; when $u = 0, S_1: S_2: S_3 = 1: 3: 5$

236 **(b)**

$$\vec{v} = \vec{u} + \vec{a}t \Rightarrow \vec{v} = 3\hat{i} + 4\hat{j} + (0.4\hat{i} + 0.3\hat{j}) \times 10$$

 $v = 3\hat{i} + 4\hat{j} + 4\hat{i} + 3\hat{j} = 7\hat{i} + 7\hat{j}$
 $\Rightarrow |\vec{v}| = 7\sqrt{2} \text{ units}$

237 (a)

From the figure, the relative displacement is

$$s_{\rm rel} = (200 + 100) \text{m} = 300 \text{m}$$

$$v_{\text{rel}} = v_1 - v_2 = (20 - 7.5) \text{ms}^{-1}$$

= 12.5 ms⁻¹

$$\therefore t = \frac{s_{\text{rel}}}{v_{\text{rel}}} = \frac{300}{12.5} = 24s$$

238 (d

At highest point
$$v = 0$$
 and $H_{\text{max}} = \frac{u^2}{2a}$

239 (d

$$v = \frac{ds}{dt} = 3t^2 - 12t + 3$$
 and $a = \frac{dv}{dt} = 6t - 12$
For $a = 0$, we have $t = 2$ and at $t = 2$, $v = 0$

 $-9 ms^{-1}$

$$\frac{11h}{36} = \frac{9.8}{2}(2n-1)$$

or
$$\frac{11}{36} \times \frac{1}{2} \times 9.8n^2 = \frac{9.8}{2}(2n-1)$$

or
$$2n-1=\frac{11}{36}n^2$$
 or $11n^2=72n-36$

or
$$11n^2 - 72n + 36 = 0$$

or
$$11n^2 - 66n - 6n + 36 = 0$$

or
$$11n(n-6) - 6(n-6) = 0$$

or
$$(11n-6)(n-6)=0$$

$$\Rightarrow$$
 $n = 6$ (Rejecting fractional value)

$$h = \frac{1}{2} \times 10 \times 6 \times 6 \text{m} = 180 \text{m}$$

241 (d)

Given,
$$x = 2 - 5t + 6t^2$$
 ... (i)

Differentiating with respect to t

$$\frac{dx}{dt} = -5 + 12t$$

$$t = 0 \text{ s}, \frac{dx}{dt} = -5 \text{ ms}^{-1}$$

Hence, initial velocity $v = -5 \text{ ms}^{-1}$

242 (d)

The braking retardation will remain same and assumed to be constant, let it be *a*.

From the 3rd equation of motion, $v^2 = u^2 + 2as$

Ist case:
$$0 = \left(60 \times \frac{5}{18}\right)^2 - 2a \times s_1$$

Or
$$s_1 = \frac{(60 \times 5/18)^2}{2a}$$

IInd case:
$$0 = (120 \times \frac{5}{18})^2 - 2a \times s_2$$

Or
$$s_2 = \frac{(120 \times 5/18)^2}{2a}$$

$$\therefore \frac{s_1}{s_2} = \frac{1}{4} \Rightarrow s_2 = 4s_1 = 4 \times 20 = 80 \text{ m}$$

243 (d)

Net displacement = 0 and total distance = OP + PO + OO

$$= 1 + \frac{2\pi \times 1}{4} + 1 = \frac{14.28}{4} \ km$$

Average speed =
$$\frac{14.28}{4 \times 10/60}$$

$$=\frac{6\times14.28}{4}=21.42\ km/h$$

[244 **(b**]

The velocity time graph for given problem is shown in the figure.

Distance travelled S = Area under curve = 2 + 2 = 4m

245 (c)

From acceleration-velocity graph, we have a = k v where k is a constant which represents the slope of the given line.

As,
$$a = v \frac{dv}{ds}$$
, so $v = \frac{dv}{ds} = kv$

or
$$\frac{dv}{ds} = k = a$$
 constant

Thus, the slope of velocity-displacement graphs is same as that of acceleration velocity. Which is constant.

246 (b)

Given,
$$a = \frac{dv}{dt} = 6t + 5$$

Or
$$dv = (6t + 5) dt$$

Integrating, we get

$$\int_0^v dv = \int_0^t (6t + 5) \ dt$$

Or
$$v = \left(\frac{6t^2}{2} + 5t\right)$$

Again
$$v = \frac{ds}{dt}$$

$$ds = \left(\frac{6t^2}{2} + 5t\right) dt$$

Integrating again, we get

$$\int_0^s ds = \int_0^t \left(\frac{6t^2}{2} + 5t\right) dt$$

$$\therefore \qquad \qquad s = \frac{3t^3}{3} + \frac{5t^2}{2}$$

When,
$$t = 2$$
 s, $s = 3 \times \frac{2^3}{3} + \frac{5 \times 2^2}{2} = 3 \times \frac{8}{3} + \frac{5 \times 4}{2}$
= $8 + 10 = 18$ m

247 (c)

When a particle is moving with uniform acceleration, let v be the velocity of particle at a distance s,

Then average velocity =
$$\frac{0+v}{2} = \frac{v}{2}$$

Time taken,
$$t_1 = \frac{s}{(v/2)} = \frac{2s}{v}$$

When particle moves with uniform velocity, time taken, $t_2 = \frac{2s}{v}$

When particle moves with uniform acceleration,

Time taken,
$$t_3 = \frac{3s}{(0+v)/2} = \frac{6s}{v}$$

Total time=
$$t_1 + t_2 + t_3 = \frac{2s}{v} + \frac{2s}{v} + \frac{6s}{v} = \frac{10s}{v}$$

$$v_{av} = \frac{s + 2s + 3s}{10s/v} = \frac{6v}{10} \text{ or } \frac{v_{av}}{v} = \frac{6}{10} = \frac{3}{5}$$

248 (c)

For first ball
$$h = \frac{1}{2}gt^2$$
 ...(i)

For second ball

$$(h-20) = \frac{1}{2}g(t-1)^2$$
 ...(ii)

Subtract equation (ii) from (i)

$$20 = -5 + 10t \Rightarrow : t = 2.5 \text{ sec}$$

Hence, height
$$h = \frac{1}{2} \times 10 \times (2.5)^2 = 31.2 \text{ m}$$

249 (d)

In the positive region the velocity decreases linearly (during rise) and in the negative region velocity increases linearly (during fall) and the direction is opposite to each other during rise and fall, hence fall is shown in the negative region

251 (c)

$$\therefore S_1 = ut + \frac{1}{2}at^2 \quad ... (i)$$

and velocity after first t sec

$$v = u + at$$

$$A \xrightarrow{c} \begin{array}{c} s_1 \\ \hline \\ t_1 \end{array} \xrightarrow{c} \begin{array}{c} s_2 \\ \hline \\ t_2 \end{array} C$$

$$t_1 = t_2 = t$$
 (given)

Now,
$$S_2 = vt + \frac{1}{2}at^2$$

$$=(u+at)t + \frac{1}{2}at^2$$
 ... (ii)

Equation (ii)
$$-$$
 (i) $\Rightarrow S_2 - S_1 = at^2$

$$\Rightarrow a = \frac{S_2 - S_1}{t^2} = \frac{65 - 40}{(5)^2} = 1m/s^2$$

From equation (i), we get,

$$S_1 = ut + \frac{1}{2}at^2 \Rightarrow 40 = 5u + \frac{1}{2} \times 1 \times 25$$

 $\Rightarrow 5u = 27.5 : u = 5.5 \text{ m/s}$

252 (d)

Let acceleration is a and retardation is -2a

Then for acceleration motion

$$t_1 = \frac{v}{a}$$
 ...(i)

For retarding motion

$$t_2 = \frac{v}{2a}$$
 ...(ii)

Given
$$t_1 + t_2 = 9 \Rightarrow \frac{v}{a} + \frac{v}{2a} = 9 \Rightarrow \frac{3v}{2a} = 9 \Rightarrow \frac{v}{a} = 6$$

Hence, duration of acceleration, $t_1 = \frac{v}{a} = 6$ sec

253 (a)

$$v'' = \sqrt{\frac{(v_1)^2 + (v_2)^2}{2}} = \sqrt{\frac{900 + 400}{2}} = \sqrt{650}$$
$$= 25.5 \text{ ms}^{-1}$$

254 (a)

$$x_1 = \frac{1}{2}at^2$$
 and $x_2 = ut$ $\therefore x_1 - x_2 = \frac{1}{2}at^2 - ut$
 $y = \frac{1}{2}at^2 - ut$. This equation is of parabola
$$\frac{dy}{dt} = at - u \text{ and } \frac{d^2y}{dt^2} = a$$

As $\frac{d^2y}{dt^2} > 0$ *i. e.*, graph shows possess minima at $t = \frac{u}{a}$

255 (b)

Distance = Area under v - t graph = $A_1 + A_2 + A_3 + A_4$

$$= \frac{1}{2} \times 1 \times 20 + (20 \times 1) + \frac{1}{2}(20 + 10) \times 1 + (10 \times 1)$$

= 10 + 20 + 15 + 10 = 55m

256 (d)

Let S be the distance between AB and a be constant acceleration of a particle. Then

$$v^2 - u^2 = 2aS$$

Or
$$aS = \frac{v^2 - u^2}{2}$$

Let v_c be velocity of a particle at midpoint C

$$v_c^2 - u^2 = 2a\left(\frac{3}{2}\right)$$

$$v_c^2 = u^2 + aS = u^2 + \frac{v^2 - u^2}{2}$$
 [Using (i)]

$$v_c = \sqrt{\frac{u^2 + v^2}{2}}$$

257 (a)

Given line have positive intercept but negative slope. So its equation can be written as $v=-mx+v_0$ (i) [where $m=\tan\theta=\frac{v_0}{x_0}$]

By differentiating with respect to time we get

$$\frac{dv}{dt} = -m\frac{dx}{dt} = -mv$$

Now substituting the value of v from eq. (i) we get

$$\frac{dv}{dt} = -m[-mx + v_0] = m^2x - mv_0 : a$$
$$= m^2x - mv_0$$

i. e. the graph between *a* and *x* should have positive slope but negative intercept on *a*-axis. So graph (a) is correct

258 (c)

$$(2v)^2 - v^2 = 2gh'$$
 or $4v^2 - v^2 = 2gh'$
or $3v^2 = 2gh'$ or $3 \times 2gh = 2gh'$ or $h' = 3h$

259 (d)

$$S \propto u^2 \Rightarrow \frac{S_1}{S_2} = \left(\frac{1}{4}\right)^2 = \frac{1}{16}$$

260 (b)

$$10t = 48 + \frac{1}{2} \times 1 \times t^2 \text{ or } t^2 - 20t + 96 = 0$$
or $t^2 - 8t - 12t + 96 = 0$ or $t(t - 8) - 12(t - 8) = 0$
or $(t - 12)(t - 8) = 0$ or $t = 8$ s or 12 s
But we are interested in minimum time.

261 (c)

Given
$$\overrightarrow{AB}$$
 = Velocity of boat = km/hr

$$\overrightarrow{AC}$$
 = Resultant velocity of boat = $10 \, km/hr$

 \overrightarrow{BC} = Velocity of river

$$= \sqrt{AC^2 - AB^2}$$

$$=\sqrt{(10)^2-(8)^2}=6 \, km/hr$$

262 (a)

$$\frac{dv}{dt} = -2.5\sqrt{v}$$

$$\Rightarrow \qquad \frac{dv}{\sqrt{v}} = -2.5dt$$

$$\Rightarrow \int_{6.25}^{0} v^{-1/2} \ dv = -2.5 \int_{0}^{t} dt$$

$$\Rightarrow$$
 $-2.5[t]_0^t = [2v^{1/2}]_{6.25}^0$

$$\Rightarrow$$
 $t = 2 \text{ s}$

263 (c)

Both the stones will have the same speed when they hit the ground.

264 (c)

$$S_n = u + \frac{a}{2}(2n - 1) \Rightarrow 1.2 = 0 + \frac{a}{2}(2 \times 6 - 1)$$

$$\Rightarrow a = \frac{1.2 \times 2}{11} = 0.218 \, \text{m/s}^2$$

266 **(b)**
$$\Delta t = \sqrt{\frac{2 \times 19.6}{9.8}} s - \sqrt{\frac{2 \times 18.6}{9.8}} s = 2 - 1.95 = 0.05s$$

Here
$$v = 144 \ km/h = 40m/s$$

 $v = u + at \Rightarrow 40 = 0 + 20 \times a \Rightarrow a = 2 \ m/s^2$
 $\therefore s = \frac{1}{2}at^2 = \frac{1}{2} \times 2 \times (20)^2 = 400 \ m$

268 (c)

$$\Delta x = \frac{1}{2}gt^2 - \frac{1}{2}g(t-1)^2$$

$$= \frac{1}{2}g[t^2 - (t-1)^2] = \frac{1}{2}g(2t-1)$$

$$= \frac{1}{2} \times 9.8 \times 5m = 24.5m$$

Net acceleration of a body when thrown upward = acceleration of body – acceleration due to gravity = a - g

From figure,
$$V_B \sin \theta = V_W$$

 $\sin \theta = \frac{V_W}{V_B} = \frac{1}{2} \Rightarrow \theta = 30^\circ$ [: $V_B = 2V_W$]

Time taken to cross the river,

$$t = \frac{D}{V_B \cos \theta} = \frac{D}{V_B \cos 30^\circ} = \frac{2D}{V_B \sqrt{3}}$$

271 **(a)**

$$h_{\text{max}} = \frac{u^2}{2g} = \frac{(15)^2}{2 \times 10} = 11.25m$$

272 **(d)**

$$v = \alpha \sqrt{x} \Rightarrow \frac{dx}{dt} = \alpha \sqrt{x} \Rightarrow \frac{dx}{\sqrt{x}} = \alpha dt$$
By integrating both sides $\int x^{-1/2} dx = \int \alpha dt$

$$\Rightarrow \frac{\sqrt{x}}{1/2} = \alpha t \Rightarrow \sqrt{x} = \frac{1}{2} \alpha t \Rightarrow x = \frac{1}{4} \alpha^2 t^2 \therefore x \propto t^2$$

I is not possible because total distance covered by a particle increases with time
II is not possible because at a particular time, position cannot have two values
III is not possible because at a particular time, velocity cannot have two values
IV is not possible because speed can never be negative

274 (d)

The nature of the path is decided by the direction of velocity, and the direction of acceleration. The trajectory can be a straight line, circle or a parabola depending on these factors

275 (a)

If u is the initial velocity then distance covered by it in $2 \sec c$

$$S = ut + \frac{1}{2}at^2 = u \times 2 + \frac{1}{2} \times 10 \times 4$$
$$= 2u + 20 \quad \dots (i)$$

Now distance covered by it in 3rd sec

$$S_{3^{\text{rd}}} = u + \frac{1}{2}(2 \times 3 - 1)10$$

= $u + 25$... (ii)

From (i) and (ii), $2u + 20 = u + 25 \Rightarrow u = 5$ $\therefore S = 2 \times 5 + 20 = 30 \text{ m}$

276 **(b)** $v = g \times t = 32 \times 1 = 32 ft/sec$

277 (d)

In case of motion under gravity, time taken to go up is equal to the time taken to fall down through the same distance.

Time of desent (t_2) = time of ascent (t_1) = $\frac{u}{g}$

$$\therefore \text{ Total time of flight } T = t_1 + t_2 = \frac{2u}{g}$$

Or
$$u = \frac{g(t_1 + t_2)}{2}$$

278 (a)

 $H_{\rm max} \propto u^2 :: u \propto \sqrt{H_{\rm max}}$ i. e. to triple the maximum height, ball should be thrown with velocity $\sqrt{3}~u$

279 **(d)**

$$x = 30 + 180 = 120 \text{m}$$

 $y = 9x^2$
 $\Rightarrow \frac{dy}{dt} = v_y = 18x \frac{dx}{dt} = 18x \left(\frac{1}{2}\right)$

$$\Rightarrow \frac{dy}{dt} = v_y = 6x$$

$$a_y = \frac{d^2y}{dt^2} = \frac{dv_y}{dt} = 6\left(\frac{dx}{dt}\right) = 6\left(\frac{1}{3}\right)$$

$$\Rightarrow a_y = 2\text{ms}^{-2} \text{ along } y\text{-axis.}$$
Hence, $a_y = (2\text{ms}^{-2})\hat{j}$

280 (d)

I is not possible because total distance covered by a particle increases with time
II is not possible because at a particular time, position cannot have two values
III is not possible because at a particular time, velocity cannot have two values
IV is not possible because speed can never be negative

281 (a) $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k} : r = \sqrt{x^2 + y^2 + z^2}$ $r = \sqrt{6^2 + 8^2 + 10^2} = 10\sqrt{2}m$

282 **(a)**

Velocity required by body in 10 sec $v = 0 + 2 \times 10 = 20 \, m/s$ And distance travelled by it in 10 sec $S_1 = \frac{1}{2} \times 2 \times (10)^2 = 100 \, m$

Then it moves with constant velocity (20 m/s) for

$$S_2 = 20 \times 30 = 600 \, m$$

After that due to retardation $(4 m/s^2)$ it stops

$$S_3 = \frac{v^2}{2a} = \frac{(20)^2}{2 \times 4} = 50m$$

Total distance travelled $S_1 + S_2 + S_3 = 750m$

283 (b)

Let v_w be velocity of water and v_b be the velocity of motor boat in still water. If x is the distance covered, then as per question

$$x = (v_b + v_w) \times 6 = (v_b - v_w) \times 10$$

On solving, $v_w = v_b/4$

$$\therefore x = [v_b + v_b/4] \times 6 = 7.5v_b$$

Time taken by motor boat to cross the same distance in still water is

$$t = \frac{x}{x_b} = \frac{7.5}{v_b} = 7.5$$
h

284 (d)

$$x \propto t^3 : x = Kt^3$$

 $\Rightarrow v = \frac{dx}{dt} = 3Kt^2 \text{ and } a = \frac{dv}{dt} = 6Kt$

1. 0. 0

$$\int_{6.25}^{0} \frac{dv}{\sqrt{v}} = -2.5 \int_{0}^{t} dt$$

$$|2\sqrt{v}|_{6.25}^{0} = -2.5t$$
$$2\sqrt{6.25} = 2.5t$$
$$t = 2sec$$

286 **(b)**

Total time of motion is $2 \min 20 \sec = 140 \sec$ As time period of circular motion is $40 \sec$ so in $140 \sec$. Athlete will complete 3.5 revolution i.e., He will be at diametrically opposite point i.e., Displacement = 2R

287 (b)

Total time of motion is $2 \min 20 \sec = 140 \sec$ As time period of circular motion is $40 \sec$ so in $140 \sec$. Athlete will complete 3.5 revolution i.e., He will be at diametrically opposite point i.e., Displacement = 2R

288 (a) $v = u + at \Rightarrow v = 0 + 5 \times 10 = 50 \text{ m/s}$

289 **(a)**

Let initial (t = 0) velocity of particle= uFor first 5 sec of motion $s_5 = 10$ metre

$$s = ut + \frac{1}{2}at^2 \Rightarrow 10 = 5u + \frac{1}{2}a(5)^2$$

$$2u + 5a = 4$$

For first 8 sec of motion $s_8 = 20 metre$

$$20 = 8u + \frac{1}{2}a(8)^2 \Rightarrow 2u + 8a = 5$$

By solving $u = \frac{7}{6}m/s$ and $a = \frac{1}{3}m/s^2$

Now distance travelled by particle in Total 10 sec

$$s_{10} = u \times 10 + \frac{1}{2}a(10)^2$$

By substituting the value of u and a we will get $s_{10} = 28.3 m$

so the distance in last $2 \sec = s_{10} - s_8$ = 28.3 - 20 = 8.3m

290 (c)

$$h_1 = \frac{1}{2}gt^2 = \frac{1}{2} \times 10 \times 1^2 = 5m$$

 $h_2 = \frac{1}{2}gt^2 = \frac{1}{2} \times 10 \times 2^2 = 20m$

From ground, 5m, 20m, 15m (shown in figure)

291 (d)

In the positive region the velocity decreases linearly (during rise) and in the negative region velocity increases linearly (during fall) and the

direction is opposite to each other during rise and fall, hence fall is shown in the negative region

$$H_{\text{max}} = \frac{u^2}{2g} = \frac{19.6 \times 19.6}{2 \times 9.8} = 19.6 \text{ m}$$

293 (d)

Given $a = 19.6m/s^2 = 2g$

Resultant velocity of the rocket after 5 \sec

$$v = 2g \times 5 = 10g m/s$$

Height achieved after 5 sec, $h_1 = \frac{1}{2} \times 2g \times 25 =$

245m

On switching off the engine it goes up to height h_2 where its velocity becomes zero

$$0 = (10g)^2 - 2gh_2 \Rightarrow h_2 = 490m$$

 \therefore Total height of rocket = 245 + 490 = 735 m

294 (b)

Let the stone remains in air for t s. From $S = ut + \frac{1}{2}gt^2$

Here,
$$u = 0$$
, $S = \frac{1}{2}gt^2$

Total distance travelled by the stone in last second is

$$D = S_t - S_{t-1} = \frac{1}{2}gt^2 - \frac{1}{2}g(t-1)^2$$

Distance travelled by the stone in first three seconds is

$$S_3 = \frac{1}{2} \times g \times 3^2 = \frac{9}{2}g$$

According to given problem, $D = S_3$

$$\therefore \frac{g}{2}(2t-1) = \frac{9}{2}g \text{ or } 2t-1 = 9 \implies t = 5s$$

295 (d)

Let height of tower is h and body takes t time to reach to ground when it fall freely

$$\therefore h = \frac{1}{2}gt^2$$

In last second i.e. t^{th} sec body travels =0.36 h It means in rest of the time i.e. in (t-1)sec it travels

$$= h - 0.36 h = 0.64 h$$

Now applying equation of motion for (t-1)sec

$$0.64 h = \frac{1}{2}g(t-t)^2$$

From (i) and (ii) we get, $t = 5 \sec$ and h = 125m

296 (c)

$$1 = \frac{v}{t_1}$$
, $3 = \frac{v}{t_2}$, $1200 = \frac{1}{2}(t_1 + t_2)v$,

$$1200 = \frac{1}{2} \left(v + \frac{v}{3} \right) v = \frac{1}{2} \frac{4v^2}{3} = \frac{2v^2}{3}$$

or $v^2 = 1800$,

$$\therefore 1200 = \frac{1}{2}t \times \sqrt{1800}$$

$$t = \frac{2400}{\sqrt{1800}} s = \frac{2400}{42.43} s = 56.6 s$$

297 (d)

From equation of motion

$$s = ut + \frac{1}{2}at^{2}$$

$$x = 0 + \frac{1}{2} \times 10t^{2} = 5t^{2} \quad \dots (i)$$

$$x + 3 = 0 + \frac{1}{2} \times 10(t + 0.5)^{2}$$

$$x + 3 = 5\left(t^2 + \frac{1}{4} + t\right)$$
 ... (ii)

Subtract Eq. (i) from Eq. (ii)

$$3 = 5\left(\frac{1}{4} + t\right) = \frac{5}{4} + 5t$$

$$3 - \frac{5}{4} = 5t$$

$$\frac{7}{4} = 5t \implies t = \frac{7}{20} \text{ s}$$

Now,
$$v = u + at$$

$$v = 0 + 10 \times \frac{7}{20} = 3.5 \text{ ms}^{-1}$$

298 (d)

Velocity of particle =
$$\frac{\text{Total displacement}}{\text{Total time}}$$

= $\frac{\text{Diameter of circle}}{5} = \frac{2 \times 10}{5} = 4 \text{ m/s}$

299 (b)

Let the initial velocity of ball be u

Time of rise $t_1 = \frac{u}{g+a}$ and height reached $= \frac{u^2}{2(g+a)}$

Time of fall t_2 is given by

$$\frac{1}{2}(g-a)t_2^2 = \frac{u^2}{2(g+a)}$$

$$\Rightarrow t_2 = \frac{u}{\sqrt{(g+a)(g-a)}} = \frac{u}{(g+a)} \sqrt{\frac{g+a}{g-a}}$$

$$\therefore t_2 > t_1 \text{ because } \frac{1}{g+a} < \frac{1}{g-a}$$

$$\vec{r} = 3t\hat{\imath} - t^2\hat{\jmath} + 4\hat{k}$$

Velocity,
$$\vec{v} = \frac{d\vec{r}}{dt} = \frac{d}{dt} (3t\hat{\imath} - t^2\hat{\jmath} + 4\hat{k}) = 3\hat{\imath} - 2t\hat{\jmath}$$

At
$$t = 5s \Rightarrow \vec{v} = 3\hat{\imath} - 10\hat{\jmath}$$

$$|\vec{v}| = \sqrt{(3)^2 + (-10)^2} = \sqrt{9 + 100} = \sqrt{109}$$

= 10.44 ms⁻¹

302 (c)

Horizontal distance covered by the wheel in half revolution = πR

So the displacement of the point which was initially in contact with ground

$$= AA' = \sqrt{(\pi R)^2 + (2R)^2}$$

= $R\sqrt{\pi^2 + 4} = \sqrt{\pi^2 + 4}$ [As $R = 1m$]

303 (b)

$$x = 9t^2 - t^3$$
; $v = \frac{dx}{dt} = 18t - 3t^2$, For maximum

$$dv = d$$

$$\frac{dv}{dt} = \frac{d}{dt} [18t - 3t^2] = 0 \Rightarrow 18 - 6t = 0 \therefore t$$

$$= 3 \text{ sec}$$

i.e., Particle achieve maximum speed at t = 3 sec. At this instant position of this particle, $x = 9t^2 -$

$$= 9(3)^2 - (3)^3 = 81 - 27 = 54 m$$

304 (a)

The distance covered by the ball during the last t seconds of its upward motion = Distance covered by it in first t seconds of its downward

From
$$h == ut + \frac{1}{2}gt^2$$

$$h = \frac{1}{2}g t^2$$
 [As $u = 0$ for it downward motion]

305 (c)

If the body starts from rest and moves with constant acceleration then the ratio of distances in consecutive equal time interval $S_1: S_2: S_3 =$

306 (d)

$$3t = \sqrt{3x} + 6 \Rightarrow 3x = (3t - 6)^{2}$$

$$\Rightarrow x = 3t^{2} - 12t + 12$$

$$v = \frac{dx}{dt} = 6t - 12, \text{ for } v = 0, t = 2 \text{ sec}$$

$$x = 3(2)^{2} - 12 \times 2 + 12 = 0$$

Free fall of an object (in vacuum) is a case of motion with uniform acceleration

308 (d)

Net displacement = 0 and total distance = OP +

$$=1+\frac{2\pi\times 1}{4}+1=\frac{14.28}{4}\ km$$

Average speed =
$$\frac{14.28}{4 \times 10/60}$$

$$=\frac{6\times14.28}{4}=21.42\ km/h$$

309 (b)

Let the particle moves toward right with velocity 6 m/s. Due to retardation after time t_1 its velocity becomes zero

From $v = u - at \Rightarrow 0 = 6 - 2t_1 \Rightarrow t_1 = 3sec$

But retardation work on it for 4 sec. It means after reaching point A direction of motion get reversed and acceleration works on the particle for next

$$S_{OA} = ut_1 - \frac{1}{2}at_1^2 = 6 \times 3 - \frac{1}{2}(2)(3)^2 = 18 - 9 = 9m$$

$$S_{AB} = \frac{1}{2} \times 2 \times (1)^2 = 1m$$

$$\therefore S_{BC} = s_{oa} - s_{aB} = 9 - 1 = 8m$$

Now velocity of the particle at pint B in return journey $v = 0 + 2 \times 1 = 2m/s$

In return journey from B to C, particle moves with constant velocity 2m/s to cover the distance 8m.

Time taken =
$$\frac{\text{Distance}}{\text{Velocity}} = \frac{8}{2} = 4 \text{ sec}$$

Total time taken by particle to return at point *O* is $\Rightarrow T = t_{OA} + t_{AB} + t_{BC} = 3 + 1 + 4 = 8 sec$

310 (d)

$$x = ae^{-\alpha t} + be^{\beta t}$$

Velocity
$$v = \frac{dx}{dt} = \frac{d}{dt}(ae^{-\alpha t} + be^{\beta t})$$

$$= a.e^{-\alpha t}(-\alpha) + be^{\beta t}(\beta) = -a\alpha e^{-\alpha t} + b\beta e^{\beta t}$$

$$Acceleration = -a\alpha e^{-\alpha t}(-\alpha) + b\beta e^{bt}.\beta$$

$$= a \alpha^2 e^{-\alpha t} + b\beta^2 e^{\beta t}$$

Acceleration is positive so velocity goes on increasing with time

Speed of the object at reaching the ground v =

If heights are equal then velocity will also be equal

$$s \propto t^2[\text{Given}] : s = Kt^2$$

Acceleration
$$a = \frac{d^2s}{dt^2} = 2k$$
 [constant]

It means the particle travels with uniform acceleration

313 (d)

If t_1 and t_2 are the time, when body is at the same height then,

$$h = \frac{1}{2}gt_1t_2 = \frac{1}{2} \times g \times 2 \times 10 = 10 g$$

314 (d)

The horizontal acceleration a of the wedge should be such that in time the wedge moves the horizontal distance BC. The body must fall through a vertical distance AB under gravity. Hence,

$$BC = \frac{1}{2}at^2$$
 and $AB = \frac{1}{2}gt^2$
 $\tan\theta = \frac{AB}{BC} = \frac{g}{a}$ or $a = \frac{g}{\tan\theta} = g \cot\theta$

315 (a)

Horizontal velocity of dropped packet = uVertical velocity = $\sqrt{2gh}$

 \therefore Resultant velocity at earth = $\sqrt{u^2 + 2gh}$

316 (c)

$$S_n = \frac{1}{2}g\cos\theta (2n-1), S_{n+1}$$

$$= \frac{1}{2}g\cos\theta \{2(n+1) - 1\}$$

$$\frac{S_n}{S_{n+1}} = \frac{2n-1}{2n+1}$$

317 (c)

$$x = at + bt^2 - ct^3, a = \frac{d^2x}{dt^2} = 2b - 6ct$$

318 **(b**)

$$\vec{v} = \vec{u} + \vec{a}t \Rightarrow \vec{v} = 3\hat{\imath} + 4\hat{\jmath} + (0.4\hat{\imath} + 0.3\hat{\jmath}) \times 10$$

$$v = 3\hat{\imath} + 4\hat{\jmath} + 4\hat{\imath} + 3\hat{\jmath} = 7\hat{\imath} + 7\hat{\jmath}$$

$$\Rightarrow |\vec{v}| = 7\sqrt{2} \text{ units}$$

319 (d)

Initial velocity of balloon with respect to ground $v = 10 + 5 = 15 \, m/sec$ upward

After 2 seconds its velocity, v = u - gt $v = 15 - 10 \times 2 = -5 \, m/sec = 5 \, m/sec$ (downward)

320 (c)

On rebound, there is an instantaneous change in the direction of velocity. This settle the answer.

321 (b)

Given,
$$x = 4(t-2) + a(t-2)^2$$

$$v = \frac{dx}{dt} = 4 + 2a(t-2)$$

At
$$t = 0$$
, $v = 4(1 - a)$

Acceleration
$$a = \frac{d^2x}{dt^2} = 2a$$

322 (c)

$$\frac{dx}{dt} = 4t^3 - 2t$$

or
$$dx = 4t^3dt - 2t dt$$

Integrating,
$$x = \frac{4t^4}{4} - \frac{2t^2}{2} = t^3 - t^2$$

When
$$x = 2$$
, $t^4 - t^2 - 2 = 0$,

$$t^2 = \frac{-(-1) \pm \sqrt{1+8}}{2}$$

or
$$t^2 = \frac{1\pm 3}{2} = 2$$
 (ignoring – ve sign)

Again,
$$\frac{d^2x}{dt^2} = 12t^2 - 2$$

When $t^2 = 2$, acceleration= $12 \times 2 - 2 = 22 \text{ms}^{-2}$

323 (d)

Displacement form 0 to 5 s = 40 m

Displacement from 5 to 10 s = 40 m

Displacement from 0 to 15 s = -20 m

And displacement from 15 to 20 s = 0 m

: Net displacement =
$$40 + 40 - 20 + 0 = 60 \text{ m}$$

Total time taken = 5 + 5 + 15 + 5 = 30 min.

Hence, average speed =
$$\frac{\text{displacement (m)}}{\text{time (min)}} = \frac{60}{30}$$

= 2 m min⁻¹.

324 (a)

Since slope of graph remains constant for velocity-time graph

325 (d)

$$x = ae^{-\alpha t} + be^{\beta t}$$
Velocity $v = \frac{dx}{dt} = \frac{d}{dt}(ae^{-\alpha t} + be^{\beta t})$

$$= a.e^{-\alpha t}(-\alpha) + be^{\beta t}(\beta) = -a\alpha e^{-\alpha t} + b\beta e^{\beta t}$$

Acceleration =
$$-a\alpha e^{-\alpha t}(-\alpha) + b\beta e^{bt}$$
. β

$$= a \alpha^2 e^{-\alpha t} + b\beta^2 e^{\beta t}$$

Acceleration is positive so velocity goes on increasing with time

326 **(b)**

Given acceleration a = 6t + 5

$$\therefore a = \frac{dv}{dt} = 6t + 5, dv = (6t + 5)dt$$

Integrating it, we have $\int_0^v dv = \int_0^t (6t+5)dt$

 $v = 3t^2 + 5t + C$, where *C* is a constant of integration

When
$$t = 0$$
, $v = 0$ so $C = 0$

$$v = \frac{ds}{dt} = 3t^2 + 5t \text{ or, } ds = (3t^2 + 5t)dt$$

Integrating it within the conditions of motion, i.e., as t changes from 0 to 2s, s changes from 0 to s, we have

$$\int_0^s ds = \int_0^2 (3t^2 + 5t)dt$$
$$\therefore s = \left[t^3 + \frac{5}{2}t^2\right]_0^2 = 8 + 10 = 18 \, m$$

327 (b)

At maximum height velocity v = 0

We know that v = u + at, hence

$$0 = u - gT \Rightarrow u = gT$$

When
$$v = \frac{u}{2}$$
, then

$$\frac{u}{2} = u - gt \Rightarrow gt = \frac{u}{2} \Rightarrow gt = \frac{gT}{2} \Rightarrow t = \frac{T}{2}$$

Hence at $t = \frac{T}{2}$, it acquires velocity $\frac{u}{2}$

328 (b)

Let t_1,t_2 and t_3 be the time taken by the particles to cover the distance 2x,4x and 6x respectively. Let v be the velocity of the particle at B ie, maximum velocity. The particle moves with uniform acceleration from A to B.

Acceleration a_y uniform Retardation a_y motion

For motion for A to B.

Average velocity =
$$\frac{0+v}{2} = \frac{v}{2}$$

Time taken,
$$t_1 = \frac{2x}{v/2} = \frac{4x}{v}$$

Particle moves with uniform retardation from *C* to *D*

Time taken,
$$t_3 = \frac{6x}{(0+v)/2} = \frac{12x}{v}$$

Total time
$$= t_1 + t_2 + t_3$$

$$= \frac{4x}{v} + \frac{4x}{v} + \frac{12x}{v} = \frac{20x}{v}$$

$$v_{\rm av} = \frac{2x + 4x + 6x}{20x/v} = \frac{12v}{20}$$

or
$$\frac{v}{v} = \frac{12}{20} = \frac{3}{5}$$
.

329 (a)

$$S_n = u + \frac{a}{2}(2n - 1) = \frac{a}{2}(2n - 1)$$
 because $u = 0$
Hence $\frac{S_4}{S} = \frac{7}{5}$

330 (c)

Net acceleration of a body when thrown upward = acceleration of body – acceleration due to gravity = a-g

331 (d)

When A returns to the 'level' of top of tower, its downward velocity is 4ms^{-1} . This velocity is the same a that of B. So, both A and B hit the ground with the same velocity.

332 (c)

A body is moving on a straight line with constant velocity. Between A and B, the straight line is the shortest distance. This is the distance travelled. The particle starts at A and reaches B along the straight line. Therefore displacement is also AB, D = S

333 **(b)**

Let *A* and *B* will meet after time *t sec*. it means the distance travelled by both will be equal

$$S_A = ut = 40t$$
 and $S_B = \frac{1}{2}at^2 = \frac{1}{2} \times 4 \times t^2$

$$S_A = S_B \Rightarrow 40t = \frac{1}{2}4t^2 \Rightarrow t = 20 \text{ sec}$$

334 (c)

For first ball $h = \frac{1}{2}gt^2$...(i)

For second ball

$$(h-20) = \frac{1}{2}g(t-1)^2$$
 ...(ii)

Subtract equation (ii) from (i)

$$20 = -5 + 10t \Rightarrow : t = 2.5 \text{ sec}$$

Hence, height $h = \frac{1}{2} \times 10 \times (2.5)^2 = 31.2 \text{ m}$

335 (b)

$$\vec{v} = \vec{u} + \vec{a}t$$

$$v = (2\hat{i} + 3\hat{j}) + (0.3\hat{i} + 0.2\hat{j}) \times 10$$

$$= 5\hat{i} + 5\hat{j}$$

$$|\vec{v}| = 5\sqrt{2}$$

336 (c)

$$S \propto t^2 \Rightarrow \frac{S_1}{S_2} = \left(\frac{10}{20}\right)^2 \Rightarrow S_2 = 4S_1$$

337 (a)

For first marble, $h_1 = \frac{1}{2}g \times 16 = 8g$

For second marble, $h_2 = \frac{1}{2}g \times 9 = 4.5g$

For third marble, $h_3 = \frac{1}{2}g \times 4 = 2g$

For fourth marble, $h_4 = \frac{1}{2}g \times 1 = 0.5g$

$$\therefore h_1 - h_2 = 8g - 4.5g = 3.5g = 35m.$$

$$h_2 - h_3 = 4.5g - 2g = 2.5g = 25m$$
 and

$$h_3 - h_4 = 2g - 0.5g = 1.5g = 15m$$

338 (b)

$$\frac{|\text{Average velocity}|}{|\text{Average speed}|} = \frac{|\text{displacement}|}{|\text{distance}|} \le 1$$

Because displacement will either be equal or less than distance. It can never be greater than distance

339 (a)

$$H_{\text{max}} = \frac{u^2}{2g} \Rightarrow H_{\text{max}} \propto \frac{1}{g}$$

On planet *B* value of *g* is 1/9 times to that of *A*. So value of H_{max} will become 9 times *i.e.* $2 \times 9 = 18$ *metre*

340 (b)

According to given relation acceleration $a=\alpha t+\beta$

As
$$a = \frac{dv}{dt} \Rightarrow \alpha t + \beta = \frac{dv}{dt}$$

Since particle starts from rest, its initial velocity is zero

i. e., At time t = 0, velocity = 0

$$\Rightarrow \int_0^v dv = \int_0^t (\alpha t + \beta) dt \Rightarrow v = \frac{\alpha t^2}{2} + \beta t$$

341 (c)

Total distance to be covered for crossing the bridge

= length of train + length of bridge

= 150m + 850m = 1000m

Time = $\frac{\text{Distance}}{\text{Velocity}} = \frac{1000}{45 \times \frac{5}{18}} = 80 \text{ sec}$

342 (c)

Given,
$$3s = 9t + 5t^2$$
 or $s = \frac{1}{2}(9t + 5t^2)$

Velocity
$$v = \frac{ds}{dt} = \frac{1}{3}(9 + 10t)$$

Acceleration $a = \frac{d}{dt} \left(\frac{ds}{dt} \right) = \frac{d^2s}{dt^2} = \frac{10}{3}$ units.

343 (b)

Given acceleration a = 6t + 5

$$\therefore a = \frac{dv}{dt} = 6t + 5, dv = (6t + 5)dt$$

Integrating it, we have $\int_0^v dv = \int_0^t (6t + 5)dt$ $v = 3t^2 + 5t + C$, where C is a constant of integration

When t = 0, v = 0 so C = 0

$$v = \frac{ds}{dt} = 3t^2 + 5t$$
 or, $ds = (3t^2 + 5t)dt$

Integrating it within the conditions of motion, i.e., as t changes from 0 to 2s, s changes from 0 to s, we have

$$\int_0^s ds = \int_0^2 (3t^2 + 5t) dt$$

$$\therefore s = \left[t^3 + \frac{5}{2}t^2\right]_0^2 = 8 + 10 = 18 \, m$$

344 (c)

Think of the lope of the given displacement-time graph at different points and you would arrive at the correct answer.

Alternatively, look at the self-illustrative figure.

345 (b)

Let two boys meet at point C after time 't' from the starting. Then AC = vt, $BC = v_1t$

$$(AC)^2 = (AB)^2 + (BC)^2 \Rightarrow v^2t^2 = a^2 + v_1^2t^2$$

By solving we get $t = \sqrt{\frac{a^2}{v^2 - v_1^2}}$

347 (a

Here,
$$t_1 = \frac{x}{v} + \frac{x}{v} = \frac{2x}{v}$$
, $t_2 = \frac{x}{v + \omega} = \frac{x}{v - \omega} + \frac{2xv}{v^2 - \omega^2}$
or $t_2 = \frac{2xv}{v^2 \left(1 - \frac{\omega^2}{v^2}\right)} = \frac{2x}{v\left(1 - \frac{\omega^2}{v^2}\right)}$

or
$$t_2 = \frac{t_1}{1 - \frac{\omega^2}{2}}$$

or
$$t_2 > t_1$$

348 (d)

 $S \propto u^2$. If *u* becomes 3 times then *S* will become 9 times

 $i.e. 9 \times 20 = 180m$

349 (d)

Let acceleration is a and retardation is -2a. Then for accelerating motion

$$t_1 = \frac{v}{a}$$
(i)

For retarding motion, $t_2 = \frac{v}{2a}$ (ii)

Given,

$$t_1 + t_2 = 9 \Rightarrow \frac{v}{a} + \frac{v}{2a} = 9 \Rightarrow \frac{3v}{2a} = 9 \Rightarrow \frac{v}{a} = 6$$

Hence, duration of acceleration, $t_1 = 6$ s

350 (c)

$$h = \frac{1}{2}gT^2, h' = \frac{1}{2}g\left(\frac{T}{2}\right)^2h' = \frac{h}{4}$$

Height above the ground = $h - \frac{h}{4} = \frac{3h}{4}$

351 (b)

Given,
$$y = bx^2$$

$$\frac{dy}{dt} = 2bx \frac{dx}{dt} \qquad \dots (i)$$

$$\frac{dy}{dt} = at \qquad (\because v_y = u_y + a_y t)$$

$$at = 2bx \frac{dx}{at}$$

$$at dt = 2bx dx$$

Take integration of both sides

$$\int at \, dt = \int 2bx \, dx$$

$$\frac{at^2}{2} = bx^2 + c \qquad \dots (ii)$$

At
$$t = 0, x = 0, c = 0$$

Then
$$\frac{at^2}{2} = bx^2$$

$$x = \sqrt{\frac{at^2}{2b}} = \sqrt{\frac{a}{2b}}t$$

$$v_x = \frac{dx}{dt} = \sqrt{\frac{a}{2b}}$$

352 (c)

 $S_n \propto (2n-1)$. In equal time interval of 2 seconds Ratio of distance = 1:3:5

353 (c)

 $v^2 = u^2 + 2as$, If u = 0, then $v^2 \propto S$ *i. e.*, Graph should be parabola symmetric to displacement axis

354 (b)

Between time interval 20s the 4s, there is non-zero acceleration and retardation. Hence, distance travelled during this interval = Area between time interval 20 s to 40 s

$$= \frac{1}{2} \times 20 \times 3 + 20 \times 1 = 30 + 20$$
$$= 50 \text{ m}$$

355 (c)

$$h = ut + \frac{1}{2}gt^2 \Rightarrow 81 = -12t + \frac{1}{2} \times 10 \times t^2 \Rightarrow t$$
$$= 5.4 \text{ sec}$$

356 (c)

$$h = ut + \frac{1}{2}gt^2 \Rightarrow 81 = -12t + \frac{1}{2} \times 10 \times t^2 \Rightarrow t$$
$$= 5.4 \text{ sec}$$

357 (d)

Given,
$$\mathbf{r} = 3t\hat{\mathbf{i}} - t^2\hat{\mathbf{j}} + 4\hat{\mathbf{k}}$$

$$\therefore \quad \frac{d\mathbf{r}}{dt} = \mathbf{v} = 3\hat{\mathbf{i}} - 10\hat{\mathbf{j}}$$

At
$$t = 5 \, \text{s}$$

$$\mathbf{v} = 3\hat{\mathbf{i}} - 10\hat{\mathbf{j}}$$

$$v = \sqrt{(3)^2 + (10)^2} = \sqrt{109} = 10.44 \text{ m/s}$$

358 (d)

Given, $v = 10 \text{ g kmh}^{-1} = 30 \text{ mh}^{-1}$

From first equation of motion.

$$v = u + at$$

$$30 = 0 + a \times 5 \qquad (\because u = 0)$$

Or
$$a = 6 \text{ ms}^{-2}$$

So, distance travelled by metro train in 5 s

$$s_1 = \frac{1}{2} at^2 = \frac{1}{2} \times (6) \times (5)^2 = 75 \text{ m}$$

Distance travelled before coming to rest

$$= 45 \, \text{m}$$

So, from third equation of motion

$$0^2 = (30)^2 - 2a' \times 45$$

$$a' = \frac{30 \times 30}{2 \times 45} = 10 \text{ ms}^{-2}$$

Time taken in travelling 45 m is

$$t_3 = \frac{30}{10} = 3 \text{ s}$$

Now, total distance = 395 m

ie,
$$75 + s' + 45 = 395$$
 m

Or
$$s' = 395 - (75 + 45) = 275 \text{ m}$$

$$t_2 = \frac{275}{30} = 9.2 \text{ s}$$

Hence, total time taken in whole journey

$$= t_1 + t_2 + t_3$$
$$= 5 + 9.2 + 3 = 17.2 \text{ s}$$

$$x = \frac{1}{t+5} \Rightarrow v = \frac{dx}{dt} = -\frac{1}{(t+5)^2}$$

Acceleration, $a = \frac{dv}{dt} = \frac{2}{(t+5)^3} \Rightarrow a \propto (\text{velocity})^{3/2}$

360 (b)

$$v = \frac{ds}{dt} = 12t - 3t^2$$

Velocity is zero for t = 0 and t = 4 sec

361 (a)

Distance = Area covered between velocity and time axis

$$= \frac{1}{2}(30+10)10 = 200 meter$$

362 **(b**)

Initial speed of car,

$$u = 72 \text{ kmh}^{-1} = 72 \times \frac{5}{18} \text{ms}^{-1} = 20 \text{ ms}^{-1}$$

Distance from barrier s = 20 m

Time taken by car to hit the barrier, t = 2 s

Using first equation of motion v = u + at

$$a = \frac{v - u}{t}$$

$$\therefore a = \frac{0 - 20}{2} = -10 \text{ ms}^{-2}$$

 vesign indicates that acceleration is retarding or it is deceleration which decreases the speed of car.

363 (d)

$$S = \left(4 \times 1.5 + 4 \times 1.5 + \frac{1}{2} \times 10 \times 1.5 \times 1.5\right) m$$

= $(6 + 6 + 5 \times 2.25) m = 23.25 m$

364 (a)

From first equation of motion

$$v = u + at$$

As object starts from rest, so u = 0

$$v = at \text{ or } v \propto t$$

Therefore, v - t graph is a straight line passing through O.

365 (a)

From equation of motion, we have

$$v = u + gt$$

Where u is initial velocity and t is time.

For ball
$$A$$
, $v_A = u - gt$

For ball
$$B$$
, $u_B = 0 + gt$

$$\therefore$$
 Relative speed, $\Delta \mathbf{v} = \mathbf{v}_A - \mathbf{v}_B$

$$=(u-gt)\hat{\mathbf{j}}-(-gt\hat{\mathbf{j}})=u\hat{\mathbf{j}}$$

366 (b)

$$x = 9t^2 - t^3$$
; $v = \frac{dx}{dt} = 18t - 3t^2$, For maximum

speed

$$\frac{dv}{dt} = \frac{d}{dt} [18t - 3t^2] = 0 \Rightarrow 18 - 6t = 0 \therefore t$$
$$= 3 \sec$$

i.e., Particle achieve maximum speed at t=3 sec. At this instant position of this particle, $x=9t^2-t^3$

$$= 9(3)^2 - (3)^3 = 81 - 27 = 54 m$$

367 (c)

Average velocity = $\frac{Displacement}{Time interval}$

A particle moving in a given direction with nonzero velocity cannot have zero speed.

In general, average speed is not equal to magnitude of average velocity. However, it can be so if the motion is along a straight line without change in direction

368 (a)

Slope of velocity-time graph measures acceleration. For graph (a) slope is zero. Hence a = 0 *i. e.* motion is uniform

369 (c)

From equation of motion, we have

$$s = ut + \frac{1}{2} at^2$$

When s = 24 m, t = 4 s,

$$24 = 4u + \frac{1}{2} a(4)^2$$

Or
$$24 = 4u + 8a$$

Or
$$6 = u + 2a$$
(i)

When body travels a total distance of 24 + 64 =88 m in 8 s, we get

$$88 = 8u + \frac{1}{2}a (8)^2$$

Or
$$88 = 8u + 32a$$

Or
$$11 = u + 4a$$
 (ii)

Solving Eqs. (i) and (ii), we get

$$u = 1 \text{ ms}^{-1}$$

370 (d)

$$V_{av} = \frac{S+S}{\frac{S}{v_1} + \frac{S}{v_2}} = \frac{2v_1v_2}{v_1 + v_2}$$

371 (a)

$$S_n = u + \frac{a}{2}(2n - 1) \Rightarrow S_3 = 0 + \frac{4/3}{2}(2 \times 3 - 1)$$

 $\Rightarrow S_3 = \frac{10}{2}m$

372 (a)

$$t^2 = x^2 - 1$$
 or $x^2 = t^2 + 1$

Or
$$2x \frac{dx}{dt} = 2t$$
 or $xv = t$
Or $2x \frac{dx}{dt} + v \frac{dx}{dt} = 1$

Or
$$2x\frac{dx}{dx} + v\frac{dx}{dx} = 1$$

Or
$$x \frac{dv}{dt} = 1 - v^2$$

Or
$$\frac{dv}{dt} = \frac{1-v^2}{x} = \frac{1-\frac{t^2}{x^2}}{x} = \frac{x^2-t^2}{x^3}$$

But $x^2 - t^2 = 1$

Rut
$$x^2 - t^2 = 1$$

$$\therefore \frac{dv}{dt} = \frac{1}{r^3}$$

$$v^2 = u^2 + 2as$$

$$a = \frac{v^2 - u^2}{2s} = \frac{(20)^2 - (10)^2}{2 \times 135} = \frac{300}{270} = \frac{10}{9} m/s^2$$

$$v = u + at \Rightarrow t = \frac{v - u}{a} = \frac{20 - 10}{10/9} = \frac{10}{10/9}$$

374 (a)

$$x_1 = \frac{1}{2}at^2 \text{ and } x_2 = ut : x_1 - x_2 = \frac{1}{2}at^2 - ut$$

$$y = \frac{1}{2}at^2 - ut. \text{This equation is of parabola}$$

$$\frac{dy}{dt} = at - u$$
 and $\frac{d^2y}{dt^2} = a$

As
$$\frac{d^2y}{dt^2} > 0$$
 i. e., graph shows possess minima at $t = \frac{u}{}$

375 (a)

Distance b/w the cars A and B remains constant. Let the distance be 'x'

Velocity of C w.r.t. A and B V = 45 + 36 = $81 \, km/h$

Distance = $81 \times \frac{5}{60} = 6.75 \, Km$

376 (a)

$$\frac{1}{2}at^2 = vt \Rightarrow t = \frac{2v}{a}$$

Only directions of displacement and velocity gets changed, acceleration is always directed vertically downward

378 (a)

$$\therefore a = \frac{dv}{dt} = 2(t-1) \Rightarrow dv = 2(t-1)dt$$

$$\Rightarrow v = \int_0^5 2(t-1)dt = 2\left[\frac{t^2}{2} - t\right]_0^5 = 2\left[\frac{25}{2} - 5\right]$$

$$= 15 \text{ m/s}$$

379 (c)

Vertical component of velocities of both the balls are same and equal to zero. So $t = \sqrt{\frac{2h}{a}}$

A particle starts from rest at t = 0

The equation of motion

$$v = u + at = 0 + 3 \times 2 = 6 \text{ ms}^{-1}$$

The velocity for next 2 s

Hence, v - t graph will be as shown.

382 (b)

The given condition is possible only when body is at its highest position after 5 seconds It means time of ascent = 5 sec and time of flight $T = \frac{2u}{a} = 10$

 $\Rightarrow u = 49 \, m/s$

383 (a)

This graph shows uniform motion because line having a constant slope

384 (d)

Relative velocity $= 10 + 5 = 15 \, m/sec$ $t = \frac{150}{15} = 10 \text{ sec}$

The given condition is possible only when body is at its highest position after 5 seconds It means time of ascent = 5 sec and time of flight $T = \frac{2u}{a} = 10$ $\Rightarrow u = 49 \, m/s$

386 (b)

Let two balls meet at depth h from platform So $h = \frac{1}{2}g(18)^2 = v(12) + \frac{1}{2}g(12)^2 \Rightarrow v =$

387 (b)

 $h = \frac{1}{2}gt^2$

$$h' = \frac{1}{2}g(t - t_0)^2$$

$$h - h' = \frac{1}{2}g[t^2 - (t - t_0)^2]$$

$$= \frac{1}{2}g[t^2 - t^2 - t_0^2 + 2tt_0]$$

$$\Delta h = \frac{1}{2}gt_0(2t - t_0)$$

 Δh is increasing with time

388 (a)

Time taken by each ball to reach highest point,

As the juggler throws the second ball, when the first ball is at its highest point, so v = 0Using v = u + at, we have 0 = u + (-g)(1/n)or u = (g/n)Also $v^2 = u^2 + 2as$

$$\therefore 0 = (g/n)^2 + 2(-g)h \text{ or } h = \frac{g}{2n^2}.$$

389 (b)

$$\frac{(S)_{(last \ 2s)}}{(S)_{7s}} = \frac{\frac{1}{2} \times 2 \times 10}{\frac{1}{2} \times 2 \times 10 + 2 \times 10 + \frac{1}{2} \times 2 \times 10}$$

$$=\frac{1}{4}$$

390 (b)

Let two boys meet at point C after time 't' from the starting. Then AC = vt, $BC = v_1t$

$$(AC)^2=(AB)^2+(BC)^2\Rightarrow v^2t^2=a^2+v_1^2t^2$$
 By solving we get
$$t=\sqrt{\frac{a^2}{v^2-v_1^2}}$$

391 (b)

 $Average\ velocity = \frac{Total\ distance\ covered}{Time\ of\ flight}$ $\Rightarrow v_{av} = \frac{2u^2/2g}{2u/g} \Rightarrow v_{av} = u/2$ Velocity of projection = v [Given]

 $v_{av} = u/2$

392 (d)

Up to time t_1 slope of the graph is constant and after t_1 slope is zero i.e. the body travel with constant speed up to time t_1 and then stops

393 (a)

Given,
$$\frac{dv}{dt} = pt$$

 $dv = pt dt$

$$\int_{0}^{v} dv = P \int_{0}^{t_{1}} t dt$$

$$v = \frac{1}{2}pt_{1}^{2}$$

Again,
$$x = \frac{1}{2}p \int_0^{t_1} t_1^2 dt = \frac{1}{2}pt_1^3$$

394 (d)

Because acceleration due to gravity is constant so the slope of line will be constant i. e., velocity time curve for a body projected vertically upwards is straight line

395 (c)

Relativistic momentum =
$$\frac{m_0 v}{\sqrt{1 - v^2/c^2}}$$

If velocity is doubled then the relativistic mass also increases. Thus value of linear momentum will be more than double

396 (c)

Given
$$\overrightarrow{AB}$$
 = Velocity of boat = km/hr

$$\overrightarrow{AC}$$
 = Resultant velocity of boat = 10 km/hr

$$\overrightarrow{BC}$$
 = Velocity of river

$$= \sqrt{AC^2 - AB^2}$$
$$= \sqrt{(10)^2 - (8)^2} = 6 \text{ km/hr}$$

397 (d)

Distance,
$$x = b_0 + b_1 t + b_2 t^2$$

Velocity
$$v = \left(\frac{dx}{dt}\right) = b_1 + 2b_2t$$

Acceleration, $a = \frac{d^2x}{dt^2} = 2b_2$

398 (d)

We have standard result for this type of velocity

$$v = \sqrt{\frac{u^2 + v^2}{2}}$$

399 (c)

Let student catch the bus after t sec. So it will cover distance ut

Similarly distance travelled by the bus will be $\frac{1}{2}at^2$ for the given condition

$$ut = 50 + \frac{1}{2}at^2 = 50 + \frac{t^2}{2} \quad [a = 1 \text{ m/s}^2]$$

$$\Rightarrow u = \frac{50}{t} + \frac{t}{2}$$

To find the minimum value of u

$$\frac{du}{dt} = 0$$
, so we get $t = 10$ sec, then $u = 10$ m/s

400 (b)

Speed of stone in a vertically upward direction is $4.9 \, m/s$. So for vertical downward motion we will consider $u = -4.9 \, m/s$

$$h = ut + \frac{1}{2}gt^2 = -4.9 \times 2 + \frac{1}{2} \times 9.8 \times (2)^2$$
$$= 9.8 m$$

401 (a)

$$v = u - gt$$

At max height $v^2 = u^2 - 2gh$

$$t = \frac{u}{g} \qquad h = \frac{u^2}{2g}$$

$$\frac{t_1}{t_2} = \frac{2}{3}$$
 $\frac{h_1}{h_2} = \left(\frac{2}{3}\right)^2 = \frac{4}{9}$

In figure (b), the particle is slowly accelerated first and reaches a constant velocity for the straight line portion. Then velocity decreases are finally it stops when it reaches the top straight line portion.

Hence, figure (b) represents one dimensional motion of a particle.

403 (d)

Average acceleration =
$$\frac{\text{Change in velocity}}{\text{Time taken}} = \frac{v_2 - v_1}{t_2 - t_1}$$

= $\frac{[10 + 2(5)^2] - [10 + 2(2)^2]}{3} = \frac{60 - 18}{3} \frac{14m}{s^2}$

$$\frac{dv}{dt} = bt \Rightarrow dv = bt dt \Rightarrow v = \frac{bt^3}{2} + K_1$$
At $t = 0, v = v_0 \Rightarrow K_1 = v_0$

We get
$$v = \frac{1}{2}bt^2 + v_0$$

$$Again \frac{dx}{dt} = \frac{1}{2}bt^2 + v_0$$

$$\Rightarrow x = \frac{1}{2} \frac{bt^3}{3} + v_0 t + K_2$$

At
$$t = 0$$
, $x = 0 \Rightarrow K_2 = 0$

$$\therefore x = \frac{1}{6}bt^3 + v_0t$$

405 (c)

$$h = ut + \frac{1}{2}gt^2, t = 3 \text{ sec}, u = -4.9m/s$$

 $\Rightarrow h = -4.9 \times 3 + 4.9 \times 9 = 29.4 \text{ m}$

406 (a)

Using

$$V = u + at$$

$$V = gt$$

...(i)

Comparing with y = mx + c

Equation (i) represents a straight line passing through origin inclined x-axis (slope -g)

407 (b)

Time of flight =
$$\frac{2u}{q} = \frac{2 \times 100}{10} = 20 \text{ sec}$$

408 (d)

$$u = 0, S = 250m, t = 10sec$$

$$S = ut + \frac{1}{2}at^2 \Rightarrow 250 = \frac{1}{2}a[10]^2 \Rightarrow a = 5m/s^2$$

So, $F = ma = 0.9 \times 5 = 4.5N$

409 (d)

$$\frac{v_A}{v_B} = \frac{\tan \theta_A}{\tan \theta_B} = \frac{\tan 30^\circ}{\tan 60^\circ} = \frac{1/\sqrt{3}}{\sqrt{3}} = \frac{1}{3}$$

Instantaneous velocity is given by the slope of the curve at that instant $v = \frac{ds}{dt} = \tan \theta$ from the figure it is clear that slope of the curve is maximum at point 'C'

411 (c)

Because acceleration is a vector quantity

412 (d)

If t_1 and t_2 are time of ascent and descent respectively then time of flight $T = t_1 + t_2 = \frac{2u}{a}$

$$\Rightarrow u = \frac{g(t_1 + t_2)}{2}$$

413 (a)

$$h = ut - \frac{1}{2}gt^2 \Rightarrow 96 = 80t - \frac{32}{2}t^2$$

 $\Rightarrow t^2 - 5t + 6 = 0 \Rightarrow t = 2sec \text{ or } 3 sec$

415 (c)

Distance travelled by motor bike at t = 18s

$$s_{\text{bike}} = s_1 = \frac{1}{2}(18)(60) = 540 \text{ m}$$

Distance travelled by car at t = 18s

$$s_{\text{car}} = s_2 = (18)(60) = 720 \text{ m}$$

Therefore, separation between them at t = 18s is 180m. Let, separation between them decreases to zero at time t beyond 18s.

Hence, $s_{\text{bike}} = 540 + 60t$ and $s_{\text{car}} = 720 + 40t$

$$s_{\rm car} - s_{\rm bike} = 0$$

$$\Rightarrow$$
 720 + 40t = 540 + 60t

$$\Rightarrow$$
 $t = 9s$ beyond 18s or

Hence, t = (18 + 9)s = 27s from start and distant travelled by both is $s_{\text{bike}} = s_{\text{car}} = 1080 \text{m}$

416 (d)

Since, the initial position of cyclist coincides with final position, so his net displacement is zero.

Average speed =
$$\frac{\text{total distance travelled}}{\text{total time taken}}$$

= $\frac{OP + PQ + QO}{10} \text{km min}^{-1}$
= $\frac{1 + \frac{\pi}{2} \times 1 + 1}{10} \text{km min}^{-1}$
= $\frac{\pi + 4}{20} \times 60 \text{ kmh}^{-1} = 21.4 \text{ kmh}^{-1}$

417 (c)

$$t = \sqrt{\frac{2h}{(g+a)}} = \sqrt{\frac{2 \times 2.7}{(9.8+1.2)}} = \sqrt{\frac{5.4}{11}} = \sqrt{0.49}$$
$$= 0.7 \text{ sec}$$

As u = 0 and lift is moving upward with acceleration

418 (c)

When packet is released from the balloon, it acquires the velocity of balloon of value 12 m/s. Hence velocity of packet after 2 sec, will be $v = u + gt = 12 - 9.8 \times 2 = -76 \, \text{m/s}$

419 (c)

For first part,

$$u = 0, t = T$$
 and acceleration = a

$$v = 0 + aT = aT$$
 and $S_1 = 0 + \frac{1}{2}aT^2 = \frac{1}{2}aT^2$

For Second part,

u = aT, retardation = a_1 , v = 0 and time taken =

$$\therefore 0 = u - a_1 T_1 \Rightarrow aT = a_1 T_1$$

And from
$$v^2 = u^2 - 2aS_2 \Rightarrow S_2 = \frac{u^2}{2a_1} = \frac{1}{2} \frac{a^2T^2}{a_1}$$

$$S_2 = \frac{1}{2}aT \times T_1 \quad \left(\text{As } a_1 = \frac{aT}{T_2} \right)$$

$$\therefore v_{av} = \frac{S_1 + S_2}{T + T_1} = \frac{\frac{1}{2}aT^2 + \frac{1}{2}aT \times T_1}{T + T_1}$$

$$= \frac{\frac{1}{2}aT(T+T_1)}{T+T_1} = \frac{1}{2}aT$$

$$S = ut + \frac{1}{2}gt^{2}$$

$$30 = -25t + \frac{10}{2}t^{2} \text{ or } t^{2} - 5t - 6 = 0$$

$$Or (t - 6)(t + 1) = 0 \text{ Take positive root}$$

$$\therefore t = 6 \text{ sec}$$

421 (c)

Let the particle touches the sphere t the point A.

Let
$$PA = 1$$

$$\therefore PB = \frac{l}{2}$$

In $\triangle OPB$, $\cos \alpha = \frac{PB}{r}$

$$\therefore PB = r\cos a$$

or
$$\frac{l}{2} = r \cos a$$

$$:: l = 2r \cos \alpha$$

But
$$l = \frac{1}{2}a_0t^2$$

$$\therefore t = \sqrt{\left(\frac{2l}{a_0}\right)} = \sqrt{\left(\frac{2 \times 2r \cos a}{a_0}\right)} = \sqrt{\left(\frac{4r \cos a}{a_0}\right)}$$

422 (a)

According to problem

Distance travelled by body A in 5^{th} sec and distance travelled by body B in 3^{rd} sec. of its motion are equal.

$$0 + \frac{a_1}{2}(2 \times 5 - 1) = 0 + \frac{a_2}{2}[2 \times 3 - 1]$$
$$9a_1 = 5a_2 \Rightarrow \frac{a_1}{a_2} = \frac{5}{9}$$

424 (b)

In this problem point starts moving with uniform acceleration a and after time t (Position B) the direction of acceleration get reversed i.e. the retardation of same value works on the point. Due to this velocity of points goes on decreasing and at position C its velocity becomes zero. Now the direction of motion of point reversed and it moves from C to A under the effect of acceleration a. We have to calculate the total time in this motion. Starting velocity at position A is equal to zero. Velocity at position $B \Rightarrow v = at$ [As u = 0]

$$\overline{A} \qquad \overline{B} \qquad \overline{C}$$

Distance between A and B, $S_{AB} = \frac{1}{2}at^2$

As same amount of retardation works on a point and it comes to rest therefore

$$S_{BC} = S_{AB} = \frac{1}{2}a t^2$$

 $\therefore S_{AC} = S_{AB} + S_{BC} = a t^2$ and time required to cover this distance is also equal to t.

 \therefore Total time taken for motion between A and C = 2t

Now for the return journey from C to A ($S_{AC} = at^2$)

$$S_{AC}=u\,t+\frac{1}{2}at^2\Rightarrow at^2=0+\frac{1}{2}at_1^2\Rightarrow t_1=\sqrt{2}t$$

Hence total time in which point returns to initial point

$$T = 2t + \sqrt{2}t = (2 + \sqrt{2})t$$

425 (c)

$$h = -vt_1 + \frac{1}{2}gt_1^2$$
 or $\frac{h}{t_1} = -v + \frac{1}{2}gt_1$...(i)

$$h = vt_2 + \frac{1}{2}gt_1^2 \text{ or } -\frac{h}{t_2} = -v + \frac{1}{2}gt_2$$
 ...(ii)

$$\therefore \frac{h}{t_1} + \frac{h}{t_2} = \frac{1}{2}g(t_1 + t_2)$$

or
$$h = \frac{1}{2}gt_1t_2$$

For falls under gravity from the top of the tower

$$h = \frac{1}{2}gt^2$$

$$\therefore \frac{1}{2}gt_1t_2 = \frac{1}{2}gt^2 \Rightarrow t = \sqrt{t_1t_2}$$

426 (d)

Since c >> v (negligible)

427 (a)

For first stone u = 0 and

For second stone $\frac{u^2}{2g}4h \Rightarrow u^2 = 8gh$

$$\therefore u = \sqrt{8gh}$$

Now,
$$h_1 = \frac{1}{2}gt^2$$

$$h_2 = \sqrt{8ght - \frac{1}{2}gt^2}$$

$$u = \sqrt{8gh}$$

Where,t =time cross each other

$$\therefore h_1 + h_2 = h$$

$$\Rightarrow \frac{1}{2}gt^2 + \sqrt{8ght} - \frac{1}{2}gt^2 = h \Rightarrow t = \frac{h}{\sqrt{8gh}} = \sqrt{\frac{h}{8g}}$$

428 (b)

Let a_1 and a_2 be the retardations offered to be bullet by wood and iron respectively.

For
$$A \rightarrow B \rightarrow C$$
,

$$v_1^2 - u^2 = 2a_1(4)$$
, and $0^2 - v_1^2 = 2a_2(1)$

Adding, we get

$$-u^2 = 2(4a_1 + a_2)$$
 ...(i)

For
$$A' \to B' \to C'$$
.

$$v_2^2 - u^2 = 2a_2(2)$$

and $0^2 - v_2^2 = 2a_1(2)$

Adding, we get

$$-u^2 = 2(2a_1 + 2a_2)$$
(ii)

Equating Eqs. (i) and (ii) and solving, we get $4a_1 + a_2 = 2a_1 + 2a_2$

$$\Rightarrow a_2 = 2a_1$$

429 (c)

Let the initial velocity of balls A, B and C are equal and its magnitude is u. Since, the ball A is projected with velocity u in upward direction, so when it will come back to the projection point, its velocity remains same. So, the final velocity of ball A, when it hits the ground is given as

$$v_A^2 = u^2 + 2gh$$

$$v_A = \sqrt{u^2 + 2gh}$$
 ... (i)

And the final velocity of ball B is

$$v_B = \sqrt{u^2 + 2gh}$$
 ... (ii)

But the initial vertical velocity of the ball C is zero.

So,
$$v_C^2 = \sqrt{(0)^2 + 2gh}$$

$$\Rightarrow$$
 $v_C = \sqrt{2gh}$ (iii)

Hence, it is clear from Eqs. (i), (ii) and (iii), we get

$$v_A = v_B > v_C$$

$$Time = \frac{distance}{average speed}$$

⇒ Average speed

$$=\frac{\text{distance}}{\text{time}}$$

$$v = \frac{130 + 120 + 50}{3}$$

$$=\frac{300}{3}=100\;kmh^{-1}$$

431 (b)

$$h = vt - \frac{1}{2}gt^2 \text{ or } \frac{1}{2}gt^2 - vt + h = 0$$

or $gt^2 - 2vt + 2h = 0 \Rightarrow t_1t_2 = \frac{2h}{g}$
 $1 \times 3 = \frac{2h}{10} \text{ or } 2h = 30 \text{m or } h = 15 \text{m}$

432 (b)

Area under acceleration-time graph gives the change in velocity. Hence,

$$v_{\text{max}} = \frac{1}{2} \times 10 \times 11 = 55 \text{ ms}^{-1}$$

Therefore, the correct option is (b).

434 (b)

Let the two bodies A and B respectively meet at a time t, at a height $\frac{H}{2}$ from the ground

Using
$$S = ut + \frac{1}{2}at^2$$

For a body A, $u = V_0$, a = -g, $S = \frac{H}{2}$

$$\therefore \frac{H}{2} = V_0 t - \frac{1}{2} g t^2 \qquad \dots (i$$

For body *B*, u = 0, a = +g, $S = \frac{H}{2}$

$$\therefore \frac{H}{2} = \frac{1}{2}gt^2 \qquad ...(ii)$$

Equating equations (i) and (ii), we get
$$V_0t - \frac{1}{2}gt^2 = \frac{1}{2}gt^2 \Rightarrow V_0t = gt^2 \text{ or } t = \frac{V_0}{g}$$

Substituting the value of t in equation (i), we get

$$\frac{H}{2} = V_0 \times \left(\frac{V_0}{g}\right) - \frac{1}{2}g\left(\frac{V_0}{g}\right)^2 = \frac{V_0^2}{g} - \frac{1}{2}\frac{V_0^2}{g}$$

$$\frac{H}{2} = \frac{1}{2}\frac{V_0^2}{g} \text{ or } V_0^2 = gH \Rightarrow V_0 = \sqrt{gH}$$

(i) The displacement of the main from A to E is $\Delta x = x_2 - x_1 = 7m - (-8m) = +15m$ directed in the positive x-direction

(ii) The displacement of the man from E to C is $\Delta x = -3m - (7m) = -10m$ directed in the negative x-direction

(iii) The displacement of the man from B to D is $\Delta x = 3m - (-7m) = +10m$ directed in the positive x-axis

436 (c)

Let particle start from *O* and travels distance

$$d_1(OA), d_2(AB), d_3(BC)$$

From equation of motion, we have

$$s = ut + \frac{1}{2} at^2$$

For OA: t = 2 s, u = 0

$$d_1 = \frac{1}{2} a(2)^2 = 2a$$

For OB: t = 4 s, u = 0

$$s_2 = \frac{1}{2} a(4)^2 = 8a$$

$$d_2 = 8a - 2a = 6a$$

For OC: t = 6 s, u = 0

$$S = \frac{1}{2} a(6)^2 = 18a$$

Distance in last 2 s = 18a - 8a = 10a

$$d_1:d_2:d_3=2a:6a:10a$$

$$d_1:d_2:d_3=1:3:5$$

437 (b)

Time of ascent = Time of descent=5sec

438 (b)

From equation of motion, we have

$$v = u + gt$$

Taking downward direction negative

$$u = 10 + 5 = 15 \text{ms}^{-1}, \text{g} = 10 \text{ ms}^{-2}, t - 2 \text{ s}$$

$$\therefore v = 15 - 2 \times 10 = -2 \text{ ms}^{-1}$$

439 (d)

Total distance = 130 + 120 = 250 mRelative velocity = $30 - (-20) = 50 \, m/s$ Hence t = 250/50 = 5 s

440 (b)

The distance traveled in last second

$$S_{\text{Last}} = u + \frac{g}{2}(2t - 1) = \frac{1}{2} \times 9.8(2t - 1)$$

= 4.9(2t - 1)

and distance traveled in first three second,

$$S_{\text{Three}} = 0 + \frac{1}{2} \times 9.8 \times 9 = 44.1 \, m$$

According to problem $S_{Last} = S_{Three}$ $\Rightarrow 4.9(2t-1) = 44.1 \Rightarrow 2t-1 = 9$ $\Rightarrow t = 5 sec$

442 (b)

Let particle thrown with velocity u and its maximum height is H then $H = \frac{u^2}{2a}$

When particle is at height H/2, then its speed is $10 \, m/s$

From equation $v^2 = u^2 - 2gh$

$$(10)^2 = u^2 - 2g\left(\frac{H}{2}\right) = u^2 - 2g\frac{u^2}{4g} \Rightarrow u^2 = 200$$

Maximum height $\Rightarrow H = \frac{u^2}{2a} = \frac{200}{2 \times 10} = 10 \text{ m}$

443 (a)

Taking the motion from 0 to 2 s $u = 0, a = 3ms^{-2}, t = 2s, v = ?$ $v = u + at = 0 + 3 \times 2 = 6ms^{-1}$ Taking the motion from 2 s to 4 s $v = 6 + (-3)(2) = 0ms^{-1}$

445 (a)

$$v = \frac{dx}{dt} = \frac{d}{dt} \left[\frac{k}{b} (1 - e^{-bt}) \right] = \frac{k}{b} [0 - (-b)e^{-bt}]$$

446 (c)

Using Newton's equation of motion

$$v^2 = u^2 + 2as$$

$$\therefore (5)^2 = (20)^2 + 2(a)100$$

Or
$$a = -\frac{400-25}{200} = -\frac{375}{200} \text{ms}^{-2}$$

Therefore, fore $F = \max m \times \operatorname{acceleration} a$

$$=20 \times \left(-\frac{375}{200}\right) = -37.5 \text{ N}$$

$$\frac{1}{2}gt^2 - \frac{1}{2}g(t-2)^2 = 40$$
or $\frac{1}{2} \times 10(2t-2)(2) = 40$ or $2t-2=4$ or $t=3$

448 (d)

Let *u* be the velocity with which the stone is projected vertically upwards.

Given that,
$$v_{-h} = 2v_h$$

$$(v_{-h})^2 = 4v_h^2$$

$$u^2 - 2g(-h) = 4(u^2 - 2gh)$$

$$\therefore u^2 = \frac{10gh}{3}$$

Now,
$$h_{\text{max}} = \frac{u^2}{2g} = \frac{5h}{3}$$

449 (b)

Bullet will take $\frac{100}{1000} = 0.1 \, sec$ to reach target.

During this period vertical distance (downward)

travelled by the bullet
$$=\frac{1}{2}gt^2 = \frac{1}{2} \times 10 \times$$

$$(0.1)^2 m = 5cm$$

So the gun should be aimed 5 cm above the target

450 (a)

Distance travelled in 4 sec

$$24 = 4u + \frac{1}{2}\alpha \times 16$$
 ... (i)

Distance travelled in 8 sec

$$88 = 8u + \frac{1}{2}\alpha \times 64$$
 ... (ii)

After solving (i) and (ii), we get u = 1m/s

451 (b)

Velocity at the time of striking the floor,

$$u = \sqrt{2gh_1} = \sqrt{2 \times 9.8 \times 10} = 14m/s$$

Velocity with which it rebounds

$$v = \sqrt{2gh_2} = \sqrt{2 \times 9.8 \times 2.5} = 7 \text{ m/s}$$

∴ Change in velocity $\Delta v = 7 - (-14) = 21m/s$

$$\therefore \text{ Acceleration} = \frac{\Delta v}{\Delta t} = \frac{21}{0.01}$$
$$= 2100 m/s^2 \text{ (upwards)}$$

452 (a)

Time taken by the car to cover first half of the distance is

$$t_1=\frac{100}{60}$$

Time taken by the car to cover speed half of the

$$t_2 = \frac{100}{v}$$

Average speed ,
$$v_{av} = \frac{\text{Total distance travelled}}{\text{TOtal time taken}}$$

$$v_{av} = \frac{100 + 100}{t_1 + t_2} \Rightarrow 40 = \frac{200}{\frac{100}{60} + \frac{100}{v}}$$

$$\frac{1}{60} + \frac{1}{v} = \frac{1}{20} \Rightarrow \frac{1}{v} = \frac{1}{20} - \frac{1}{60}$$
$$\frac{1}{v} = \frac{2}{60} = \frac{1}{30}$$

$$\frac{1}{v} = \frac{2}{60} = \frac{1}{30}$$

 $v = 30km h^{-1}$

453 (b)

Free fall of an object (in vacuum) is a case of motion with uniform acceleration

454 (c)

For first projectile, $h_1 = ut - \frac{1}{2}gt^2$

For second projectile, $h_2 = u(t-T) - \frac{1}{2}g(t-T)^2$

When both meet i.e. $h_1 = h_2$

$$ut - \frac{1}{2}gt^2 = u(t - T) - \frac{1}{2}g(t - T)^2$$

$$\Rightarrow uT + \frac{1}{2}gT^2 = gtT \Rightarrow t = \frac{u}{g} + \frac{T}{2}$$

and
$$h_1 = u\left(\frac{u}{g} + \frac{T}{2}\right) - \frac{1}{2}g\left(\frac{u}{g} + \frac{T}{2}\right)^2$$

$$=\frac{u^2}{2g}-\frac{gT^2}{8}$$

455 (d)

The distance covered by a body moving with uniform acceleration is given by

$$s = ut + \frac{1}{2} at^2$$

As body starts from rest, therefore initial velocity

: Distance covered by the body

$$s = \frac{1}{2} at^2$$

Or

456 (a)

Displacement = Summation of all the area with sign

$$= (A_1) + (-A_2) + (A_3)$$

$$= (2 \times 4) + (-2 \times 2) + (2 \times 2)$$

∴ Displacement = 8 m

Distance = Summation of all the areas without sign

$$= |A_1| + |-A_2| + |A_3| = |8| + |-4| + |4|$$

$$= 8 + 4 + 4$$

∴ Distance = 16 m

457 (a)

$$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k} : r = \sqrt{x^2 + y^2 + z^2}$$
$$r = \sqrt{6^2 + 8^2 + 10^2} = 10\sqrt{2}m$$

458 (d)

Given,
$$x = 6t^2 - t^3$$

$$\frac{dx}{dt} = 12t - 3t^2 \qquad \dots (i)$$

$$\frac{dx}{dt} = 0 \Rightarrow t = 4 \text{ s}$$

Now, again differentiating Eq. (i), we get

$$\frac{d^2x}{dt^2} = 12 - 6t = 12 - 6(4) = -12$$

Since, $\frac{d^2x}{dt^2}$ is negative, hence t = 4 s gives the maximum value for x - t curve.

Moreover, acceleration $a = \frac{d^2x}{xt^2}$, at t = 0, $\frac{d^2x}{dt^2} = 12 \text{ ms}^{-2}$

459 (a)

Let the speed of trains be x

$$\therefore \frac{x-u}{x+u} = \frac{1}{2} \Rightarrow 2x - 2u = x + u \Rightarrow x = 3u$$

460 (b)

 $Average \ velocity = \frac{Total \ distance \ covered}{Time \ of \ flight}$

$$=\frac{2H_{max}}{2u/g}$$

$$\Rightarrow v_{av} = \frac{2u^2/2g}{2u/g} \Rightarrow v_{av} = u/2$$

Velocity of projection = v [Given]

$$v_{av} = u/2$$

461 (c)

For no collision, the speed of car A should be reduced to v_B before the cars meet, ie, final relative velocity of car A with respect to car B is zero ie, $v_r = 0$

Here initial relative velocity, $u_r = v_{\!\scriptscriptstyle A} - v_{\scriptscriptstyle B}$

Relative acceleration, $a_r = -a - 0 = -a$

Let relative displacement $= s_r$

The equation

$$v_r^2 = u_r^2 + 2a_r s_r$$

$$(0)^2 = (v_A - v_B) - 2as,$$

$$s_r = \frac{(v_A - v_B)^2}{2a}$$

For no collision, $s_r \leq s$

$$ie, \frac{(v_A - v_B)}{2a} \le s$$

462 (b)

Let height of minaret is H and body take time T to fall from top to bottom

$$H = \frac{1}{2}gT^2$$
 ...(i)

In last 2 sec body travels distance of 40 m so in (T-2) sec distance travelled = (H-40)m

$$(H-40) = \frac{1}{2}g(T-2)^2$$
 ...(ii)

By solving (i) and (ii), T = 3 sec and H = 45m

463 (c)

$$\therefore S_1 = ut + \frac{1}{2}at^2 \quad ... (i)$$

and velocity after first t sec

$$v = u + at$$

$$A \xrightarrow{\begin{array}{c} & & \\ &$$

Now,
$$S_2 = vt + \frac{1}{2}at^2$$

$$= (u + at)t + \frac{1}{2}at^2$$
 ... (ii)

Equation (ii) – (i)
$$\Rightarrow S_2 - S_1 = at^2$$

$$\Rightarrow a = \frac{S_2 - S_1}{t^2} = \frac{65 - 40}{(5)^2} = 1m/s^2$$

From equation (i), we get,

$$S_1 = ut + \frac{1}{2}at^2 \Rightarrow 40 = 5u + \frac{1}{2} \times 1 \times 25$$

 $\Rightarrow 5u = 27.5 : u = 5.5 m/s$

464 (c)

As
$$v^2 = v^2 - 2as \Rightarrow u^2 = 2as \ (\because v = 0)$$

$$\Rightarrow u^2 \propto s \Rightarrow \frac{u_2}{u_1} = \left(\frac{s_2}{s_1}\right)^{1/2}$$
$$\Rightarrow u_2 = \left(\frac{9}{4}\right)^{\frac{1}{2}} u_1 = \frac{3}{2}u_1 = 300m/s$$

466 (d)

For first ball

$$\frac{1}{2}gt^2 = 176.4$$

$$t = \sqrt{\frac{176.4 \times 2}{10}}$$

 $t = 5.9 \, \text{s}$

For second ball, t = 3.9 s

$$u(3.9) + \frac{1}{2}g(3.9)^2 = 176.4$$

$$\Rightarrow \qquad 3.9u + \frac{10}{2}(3.9)^2 = 176.4$$

$$\Rightarrow \qquad u = 25.7 \text{ ms}^{-1}$$

This value is approximated to 24.5 ms⁻¹.

Given,
$$a = \alpha t + \beta$$

$$\frac{dv}{dt} = \alpha t + \beta$$

$$\int_0^t dv = \int_0^t \alpha t \, dt + \int_0^t \beta \, dt$$

$$v = \frac{\alpha t^2}{2} + \beta t$$

468 (a)
$$\frac{dt}{dx} = 2\alpha x + \beta \Rightarrow v = \frac{1}{2\alpha x + \beta}$$

$$\therefore a = \frac{dv}{dt} = \frac{dv}{dx} \cdot \frac{dx}{dt}$$

$$a = v \frac{dv}{dx} = \frac{-v \cdot 2\alpha}{(2\alpha x + \beta)^2} = -2\alpha \cdot v \cdot v^2 = -2\alpha v^3$$

$$\therefore \text{ Retardation} = 2\alpha v^3$$

469 (d)

Instantaneous velocity is given by the slope of the curve at that instant $v = \frac{ds}{dt} = \tan \theta$ from the figure it is clear that slope of the curve is maximum at point 'C'

470 (c)

Given,
$$v = pt$$

$$\int_0^X dx = p \int_0^2 t \, dt$$

$$= \frac{pt^2}{2} = \frac{4 \times 4}{2} = 8m$$

471 (d)

Average velocity = $\frac{Total\ Displacement}{Time\ taken} = \frac{25}{75/15} = 5m/s$

472 (a)

$$h_{\text{max}} = \frac{u^2}{2a} = \frac{(15)^2}{2 \times 10} = 11.25m$$

473 (b)

Between time interval 20 sec to 40 sec, there is non-zero acceleration and retardation. Hence distance travelled during this interval = Area between time interval 20 sec to 40 sec = $\frac{1}{2} \times 20 \times 3 + 20 \times 1 = 30 + 20 = 50 m$

474 (b)

Since acceleration is constant, therefore there is uniform increase in velocity. So, the v-t graph is a straight line slopping upward to the right. When acceleration becomes zero, velocity is constant. So v-t graph is a straight line parallel to the timeaxis.

475 (b)

Let 'a' be the retardation of boggy then distance covered by it be S. If u is the initial velocity of boggy after detaching from train (i.e. uniform speed of train)

$$v^2 = u^2 + 2as \Rightarrow 0 = u^2 - 2as \Rightarrow s_b = \frac{u^2}{2a}$$

Time taken by boggy to stop

$$v = u + at \Rightarrow 0 = u - at \Rightarrow t = \frac{u}{a}$$

In this time t distance travelled by train = $s_t = ut = \frac{u^2}{a}$

Hence ratio $\frac{s_b}{s_1} = \frac{1}{2}$

476 (a)

Horizontal velocity of dropped packet = uVertical velocity = $\sqrt{2gh}$

 \therefore Resultant velocity at earth = $\sqrt{u^2 + 2gh}$

477 (d) Let the body be projected upwards with velocity u from top of tower. Taking vertical downward motion of boy form top of tower to ground, we

$$u = -u$$
, $a = g = 10 \text{ms}^{-2}$, $s = 50 \text{m}$, $t = 10 \text{s}$

As
$$s = ut + \frac{1}{2}at^2$$
,

So,
$$50 = -u \times 10 + \frac{1}{2} \times 10 \times 10^2$$

On solving $u = 45 \text{ms}^{-1}$

If t_1 and t_2 are the timings taken by the ball to reach points A and B respectively, then

$$20 = 45t_1 + \frac{1}{2} \times 10 \times t_1^2$$

and
$$40 = -45t_2 + \frac{1}{2} \times 10 \times t_2^2$$

On solving, we get $t_1 = 9.4 \text{ s}$ and $t_2 = 9.8 \text{s}$ Time taken to cover the distance AB $= (t_2 - t_1) = 9.8 = 9.4 = 0.4$ s.

478 (c)

Let the ball be at height h at time t and time $(t + \Delta t)$.

Then,

$$h = ut - \frac{1}{2}gt^2$$
(i)

and
$$h = u(t + \Delta t) - \frac{1}{2}g(t - \Delta t)^2$$
 ...(ii)

Equating Eqs. (i) and (ii), we get

$$t = \frac{2u - g\Delta t}{2g} \qquad(iii)$$

Substituting Eq. (iii) in Eq. (i), we get

$$h = \frac{4u^2 - g^2(\Delta t)^2}{8g}$$

$$\Rightarrow u = \frac{1}{2}\sqrt{8gh + g^2(\Delta t)^2}$$

479 (d)

Velocity of particle =
$$\frac{\text{Total displacement}}{\text{Total time}}$$

= $\frac{\text{Diameter of circle}}{5} = \frac{2 \times 10}{5} = 4 \text{ m/s}$

480 (d)

$$\Delta t = \sqrt{\frac{2 \times 12}{10}} - \sqrt{\frac{2 \times 10}{10}}$$

$$= 1.549s - 1.414s = 0.135s$$

481 (a)

$$t = \sqrt{\frac{2 \times 44.1}{9.8}} s = \sqrt{9} s = 3s,$$

$$44.1 = v \times 2 + \frac{1}{2} \times 9.8 \times 2 \times 2$$

or
$$2v = 44.1 - 4.9 \times 4 = 24.5$$

or
$$v = \frac{24.5}{2} \text{ms}^{-1} = 12.25 \text{ms}^{-1}$$

482 (a)

Here,
$$u = 0$$
, $a = g$

Distance travelled in n^{th} second is given by

$$D_n = u + \frac{a}{2}(2n-1) :: D_n \propto (2n-1)$$

$$D_1: D_2: D_3: D_4: D_5 \dots = 1:3:5:7:9:\dots$$

$$s = 3t^3 + 7t^2 + 14t + 8m$$

$$a = \frac{d^2s}{dt^2} = 18t + 14$$
 at $t = 1 \sec \Rightarrow a = 32 \text{ m/s}^2$

484 (b)

For stone to be dropped from rising balloon of velocity 29 m/s

$$u = -29 \, m/s, t = 10 sec$$

$$\therefore h = -29 \times 10 + \frac{1}{2} \times 9.8 \times 100$$

$$= -290 + 490 = 200 m$$

485 (a)

Distance travelled in 4 sec

$$24 = 4u + \frac{1}{2}\alpha \times 16$$
 ... (i)

Distance travelled in 8 sec

$$88 = 8u + \frac{1}{2}\alpha \times 64$$
 ... (ii)

After solving (i) and (ii), we get u = 1m/s

486 (c)

From acceleration time graph, acceleration is constant for first part of motion so, for this part velocity of body increases uniformly with time and as a = 0 then the velocity becomes constant.

Then again increased because of acceleration

487 (c)

$$h = ut + \frac{1}{2}gt^2 \Rightarrow 1 = 0 \times t_1 + \frac{1}{2}gt_1^2 \Rightarrow t_1$$
$$= \sqrt{2/g}$$

Velocity after travelling 1 m distance

$$v^2 = u^2 + 2gh \Rightarrow v^2 = (0)^2 + 2g \times 1 \Rightarrow v = \sqrt{2g}$$

For second 1 m distance

$$1 = \sqrt{2g} \times t_2 + \frac{1}{2}gt_2^2 \Rightarrow gt_2^2 + 2\sqrt{2g}t_2 - 2 = 0$$
$$t_2 = \frac{-2\sqrt{2g} \pm \sqrt{8g + 8g}}{2g} = \frac{-\sqrt{2} \pm 2}{\sqrt{g}}$$

$$z_2 = \frac{-\sqrt{2g} \pm \sqrt{3g} + 3g}{2g} = \frac{\sqrt{2g} \pm 2g}{\sqrt{g}}$$

Taking +ve sign $t_2 = (2 - \sqrt{2})/\sqrt{g}$

$$\frac{t_1}{t_2} = \frac{\sqrt{2/g}}{(2-\sqrt{2})/\sqrt{g}} = \frac{1}{\sqrt{2}-1}$$
 and so on

$$x = 4(t-2) + a(t-2)^2$$

At
$$t = 0$$
, $x = -8 + 4a = 4a - 8$

$$v = \frac{dx}{dt} = 4 + 2a(t-2)$$

At
$$t = 0$$
, $v = 4 - 4a = 4(1 - a)$

But acceleration, $a = \frac{d^2x}{dt^2} = 2a$

489 (d)

$$\frac{v_A}{v_B} = \frac{\tan 30^\circ}{\tan 60^\circ} = \frac{1}{\sqrt{3}} \times \frac{1}{\sqrt{3}} = \frac{1}{3}$$

Let initial velocity of the bullet = u

After penetrating 3 cm its velocity becomes $\frac{u}{2}$

From
$$v^2 = u^2 - 2as$$

$$\left(\frac{u}{2}\right)^2 = u^2 - 2a(3)$$

$$\Rightarrow 6a = \frac{3u^2}{4} \Rightarrow a = \frac{u^2}{8}$$

Let further it will penetrate through distance \boldsymbol{x} and stops at point \boldsymbol{C}

For distance *BC*, v = 0, u = u/2, s = x, $a = u^2/8$

For
$$v^2 = u^2 - 2as \Rightarrow 0 = \left(\frac{u}{2}\right)^2 - 2\left(\frac{u^2}{8}\right) \cdot x \Rightarrow x = 0$$

1 cm

491 (c)

$$h_{n^{th}} = u - \frac{g}{2}(2n - 1)$$

$$h_{5^{th}} = u - \frac{10}{2}(2 \times 5 - 1) = u - 45$$

$$h_{6^{th}} = u - \frac{10}{2}(2 \times 6 - 1) = u - 55$$

Given $h_{5^{th}} = 2 \times h_{6^{th}}$. By solving we get $u = 65 \ m/s$

492 (c)

A body is moving on a straight line with constant velocity. Between A and B, the straight line is the shortest distance. This is the distance travelled. The particle starts at A and reaches B along the straight line. Therefore displacement is also AB, D = S

493 (c)

$$s = ut + \frac{1}{2} at^2$$

For Ist body

u = 0 and a = g [freely falling body]

Distance covered in 2 s,

$$s_1 = 0 + \frac{1}{2} g(3)^2$$

For IInd body

Distance covered in 2 s,

$$s_2 = 0 + \frac{1}{2}g(2)^2$$

$$s_1 - s_2 = \frac{1}{2}g[(3)^2 - (2)^2]$$

$$= \frac{1}{2}g(9 - 4) = 25 \text{ m}$$

494 (d)

$$v = \frac{ds}{dt} = 3t^2 - 12t + 3$$
 and $a = \frac{dv}{dt} = 6t - 12$
For $a = 0$, we have $t = 2$ and at $t = 2$, $v = -9$ ms⁻¹

495 (d)

For a stone which is thrown downwards from a balloon rising upwards, the equation of motion is

$$h = -ut + \frac{1}{2}gt^2$$

$$= -29 \times 10 + \frac{1}{2} \times 9.8 \times (10)^2$$

$$= -290 + 490 = 200 \text{ m}$$

496 (d)

At the point *A*, the tangent to the curve is parallel to time axis. So, velocity at *A* is zero. But acceleration is not zero. Note that the displacement corresponding to the point *A* is not zero.

497 (a)

From equation of motion, we have

$$h = ut + \frac{1}{2}gt^2$$

taking upward direction as negative and downward direction as positive, we have

$$h = 65 \, \text{m},$$

$$u = -12 \text{ ms}^{-1} \text{and } g = 10 \text{ ms}^{-2}$$

$$\therefore \qquad 65 = -12t + \frac{1}{2} \times 10 \times t^2$$

$$5t^2 - 12t - 65 = 0$$

$$\Rightarrow$$
 $(t-5)(5t+13)=0$

$$t = 5 s$$

Let two balls meet at depth h from platform So $h = \frac{1}{2}g(18)^2 = v(12) + \frac{1}{2}g(12)^2 \Rightarrow v =$

499 (a)

500 (c)

Instantaneous velocity of running mass after t sec

$$v_t = \sqrt{v_x^2 + v_y^2}$$

Where, $v_x = v \sin \theta - gt = \text{vertical component of}$ velocity,

 $v_v = v \cos \theta$ =horizontal component of velocity

$$v_t = \sqrt{(v\cos\theta)^2 + (v\sin\theta - gt)^2}$$
$$v_t = \sqrt{v^2 + g^2t^2 - 2v\sin\theta gt}$$

501 (b)

$$x = a + bt^2, v = \frac{dx}{dt} = 2bt$$

Instantaneous velocity $v = 2 \times 3 \times 3 = 18 \, cm/$ sec

502 (c)

Since, body has uniform acceleration. So, velocity of particle is increasing with time. Hence, this is displacement-time graph with X as time axis and Y as displacement axis.

503 (a)

$$t = \sqrt{\frac{2h}{g}} \Rightarrow \frac{t_1}{t_2} = \sqrt{\frac{h_1}{h_2}} = \sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}}$$

$$v = 0 + na \Rightarrow a = v/n$$

Now, distance travelled in $n \sec \Rightarrow S_n = \frac{1}{2}an^2$ and distance travelled in $(n-2)sec \Rightarrow S_{n-2} =$

$$\frac{1}{2}a(n-2)^2$$

: Distance travelled in last 2 seconds,

$$= S_n - S_{n-2} = \frac{1}{2}an^2 - \frac{1}{2}a(n-2)^2$$

$$\frac{a}{2}[n^2 - (n-2)^2] = \frac{a}{2}[n + (n-2)][n - (n-2)]$$

$$= a(2n-2) = \frac{v}{n}(2n-2) = \frac{2v(n-1)}{n}$$

505 (a)

$$x^2 = at^2 + 2bt + c$$

Differentiating w.r.t. time, we get

$$2x\frac{dx}{dt} = 2at + 2b$$
 or $xv = at + b$ or $v = \frac{at+b}{x}$

Again differentiating w.r.t. time, we get

$$x \frac{dx}{dt} + v \frac{dx}{dt} = a$$

or
$$xA + v^2 = a$$
 or $xA = a - v^2$

or
$$xA = a - \left(\frac{at+b}{x}\right)^2$$
 or $xA = \frac{ax^2 - a^2t^2 - b^2 - 2abt}{x^2}$
or $xA = \frac{a^2t^2 + 2abt + ac - a^2t^2 - b^2 - 2abt}{x^2}$

or
$$xA = \frac{a^2t^2 + 2abt + ac - a^2t^2 - b^2 - 2abt}{x^2}$$

or
$$A = \frac{ac - b^2}{x^3}$$
 or $A \propto x^{-3}$

506 (b)

Time average velocity = $\frac{v_1 + v_2 + v_3}{3} = \frac{3 + 4 + 5}{3} = 4m/s$

507 (a)

Displacement = Summation of all the area with sign

$$= (A_1) + (-A_2) + (A_3)$$

= $(2 \times 4) + (-2 \times 2) + (2 \times 2)$

 \therefore Displacement = 8 m

Distance = Summation of all the areas without

$$= |A_1| + |-A_2| + |A_3| = |8| + |-4| + |4|$$
$$= 8 + 4 + 4$$

∴ Distance = 16 m

508 (b)

$$v^{2} = u^{2} + 2gh \Rightarrow (3u)^{2} = (-u)^{2} + 2gh \Rightarrow h$$
$$= \frac{4u^{2}}{g}$$

509 (b)

Time =
$$\frac{\text{Total length}}{\text{Relative velocity}} = \frac{50 + 50}{10 + 15} = \frac{100}{25}$$

= 4 sec

510 (c)

For first projectile, $h_1 = ut - \frac{1}{2}gt^2$

For second projectile, $h_2 = u(t-T) - \frac{1}{2}g(t-T)^2$

When both meet i.e. $h_1 = h_2$

$$ut - \frac{1}{2}gt^2 = u(t - T) - \frac{1}{2}g(t - T)^2$$

$$\Rightarrow uT + \frac{1}{2}gT^2 = gtT \Rightarrow t = \frac{u}{g} + \frac{T}{2}$$

and
$$h_1 = u\left(\frac{u}{g} + \frac{T}{2}\right) - \frac{1}{2}g\left(\frac{u}{g} + \frac{T}{2}\right)^2$$

$$=\frac{u^2}{2g}-\frac{gT^2}{8}$$

511 (b)

$$v = u + at \Rightarrow -2 = 10 + a \times 4 \Rightarrow a$$

= $-3m/\sec^2$

512 (c)

$$x = a\cos \omega t$$

$$\therefore v = \frac{dx}{dt} = -a\omega \sin \omega t$$

The instantaneous speed is given by modulus of instantaneous velocity.

 \therefore speed= $|u| = |-a\omega \sin \omega t|$

Hence, (c) is correct.

513 (b)

Maximum acceleration will be represented by CD part of the graph

Acceleration =
$$\frac{dv}{dt} = \frac{(60-20)}{0.25} = 160 \text{ km/h}^2$$

514 (a)

$$S_{3rd} = 10 + \frac{10}{2}(2 \times 3 - 1) = 35$$

$$S_{2nd} = 10 + \frac{10}{2}(2 \times 2 - 1) = 25$$

$$\therefore \frac{S_{3rd}}{S_{2nd}} = \frac{35}{25} ie = \frac{7}{5}$$

515 (c)

If the body starts from rest and moves with constant acceleration then the ratio of distances in consecutive equal time interval S_1 : S_2 : S_3 = 1:3:5

516 (d)

Area between v-t graph and time-axis

$$= \frac{1}{2} \times 2 \times 20 + 3 \times 20 + \frac{1}{2} \times 1 \times 20 + \frac{1}{2} \times 1 \times 20$$

= 100 m.

517 (c)

Given,
$$s = t^3 - 6t^2 + 3t + 4$$

Velocity
$$v = \frac{ds}{dt} = 3t^2 - 12t + 3$$
 ... (i)

Acceleration
$$a = \frac{dv}{dt} = 6t - 12$$
 ... (ii)

Since, acceleration is zero, so, 6t - 12 = 0, or t =

So, velocity v at

$$t = 2 \text{ s, is} = 3 \times 2^2 - 12 \times 2 + 3 = -9 \text{ ms}^{-1}$$

518 (b)

Maximum acceleration will be represented by CD part of the graph

Acceleration =
$$\frac{dv}{dt} = \frac{(60-20)}{0.25} = 160 \text{ km/h}^2$$

519 (b)

Let the two bodies A and B respectively meet at a time t, at a height $\frac{H}{2}$ from the ground

Using
$$S = ut + \frac{1}{2}at^2$$

For a body $A, u = V_0, a = -g, S = \frac{H}{2}$

$$\therefore \frac{H}{2} = V_0 t - \frac{1}{2} g t^2$$
 ...(i)

For body $B, u = 0, a = +g, S = \frac{H}{2}$

$$\therefore \frac{H}{2} = \frac{1}{2}gt^2 \qquad ...(ii)$$

Equating equations (i) and (ii), we get

$$V_0 t - \frac{1}{2}gt^2 = \frac{1}{2}gt^2 \Rightarrow V_0 t = gt^2 \text{ or } t = \frac{V_0}{g}$$

Substituting the value of t in equation (i), we get

$$\frac{H}{2} = V_0 \times \left(\frac{V_0}{g}\right) - \frac{1}{2}g\left(\frac{V_0}{g}\right)^2 = \frac{V_0^2}{g} - \frac{1}{2}\frac{V_0^2}{g}$$

$$\frac{H}{2} = \frac{1}{2}\frac{V_0^2}{g} \text{ or } V_0^2 = gH \Rightarrow V_0 = \sqrt{gH}$$

520 (c)

Displacement $x = at + bt^2 - ct^3$

Velocity,
$$v = \frac{dx}{dt} = a + 2bt - 3ct^2$$
 ... (i)

And acceleration, $a = \frac{a^2x}{dt^2} = 2b -$

When acceleration a = 0, $t = \frac{b}{3c}$

Substituting the value of t in Eq. (i), we get

$$v = a + \frac{b^2}{3c}$$

521 (c)

If a stone is dropped from height *h* then

$$h = \frac{1}{2}gt^2$$

if a stone is thrown upward with velocity u then

$$h = -u t_1 + \frac{1}{2}gt_1^2$$
 ...(ii

If a stone is thrown downward with velocity u then

$$h = ut_2 + \frac{1}{2}gt_2^2$$
 ...(iii)

From (i) (ii) and (iii) we get

$$-ut_1 + \frac{1}{2}gt_1^2 = \frac{1}{2}gt^2 \qquad ...(iv)$$

$$ut_2 + \frac{1}{2}gt_2^2 = \frac{1}{2}gt^2$$
 ...(v)

Dividing (iv) and (v) we get

$$Or - \frac{t_1}{t_2} = \frac{t^2 - t_1^2}{t^2 - t_2^2}$$

By solving $t = \sqrt{t_1 t_2}$

522 (a)

For upstream motion, kmh⁻¹=5kmh⁻¹

For downstream motion,

$$v = (8+3) \text{kmh}^{-1} = 11 \text{kmh}^{-1}$$

523 (d)

$$40^2 - 30^2 = 2aS, v^2 - 30^2 = 2a\frac{S}{2}$$

or
$$2(v^2 - 30^2) = 2aS$$

Comparing, $2(v^2 - 900) = 1600 - 900 = 700$

or $v^2 = 900 + 350 = 1250$ or v = 35.35 kmh⁻¹

524 (d)

 $u = 72 \, kmph = 20 \, m/s, v = 0$

By using
$$v^2 = u^2 - 2as \Rightarrow a = \frac{u^2}{2s} = \frac{(20)^2}{2 \times 200} =$$

 $1 m/s^2$

525 (a)

The portion OA of the graphs is convex upward. It represents negative acceleration. The portion AB represents negative acceleration. The portion AB represents that x is not changing with time. Clearly, it is a case of zero acceleration. The portion BC of the graph is concave upward. It represents positive acceleration. The portion CD is a straight line sloping upward to the right. It represents uniform velocity and hence acceleration is zero

526 (b)

$$v = |t - 2| \text{ms}^{-1}$$

$$v = t - 2$$
, when $t > 2s$

$$v = 2 - t$$
, when $t < 2s$

$$\therefore a = \frac{dv}{dt} = 1 \text{ms}^{-1} \text{ when } t > 2s$$

$$a = -1 \text{ms}^{-1} \text{ when } t < 2 \text{s}$$

$$a = 1 \text{ ms}^{-2}$$

$$C \longrightarrow C$$

$$A \qquad t = 2 \text{ s} \qquad B$$

In the direction of motion from A to C, bee decelerates but for C to B, bee accelerates.

Let
$$AC = s_1, BC = s_2$$

$$u_A = 2 \text{ms}^{-1}, t = 0$$

$$u_c = 0$$
 at $t = 4$ s

$$\therefore s_1 = \left(\frac{u_A + u_C}{2}\right) t_1$$

$$s_2 = \left(\frac{u_C + u_B}{2}\right) t_2$$

$$\therefore s = s_1 + s_2 = \left(\frac{2+0}{2}\right)2 + \left(\frac{0+2}{2}\right)2 = 4m$$

527 (c)

Slope is negative at the point E.

528 (d)

$$\int_{v_0}^{v} \frac{dv}{kv^3} = \int_0^t dt$$

$$-\frac{1}{k}\int_{v_0}^{v} v^{-3} dv = t \text{ or } -\frac{1}{k} \left| \frac{v^{-3+1}}{-3+1} \right|_{v_0}^{v} = t$$

or
$$\frac{1}{2k} \left[\frac{1}{v^2} - \frac{1}{v_0^2} \right] = t$$
 or $\frac{1}{v^2} - \frac{1}{v_0^2} = 2kt$

or
$$\frac{1}{v^2} = \frac{1}{v_0^2} + 2kt$$
 or $\frac{1}{v^2} = \frac{1 + 2v_0^2 kt}{v_0^2}$

or
$$v = \frac{v_0}{\sqrt{2v_0^2kt+1}}$$

529 (a)

$$\mathbf{r} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$$

$$\therefore \mathbf{r} = \sqrt{x^2 + y^2 + z^2}$$

$$\mathbf{r} = \sqrt{6^2 + 8^2 + 10^2} = 10\sqrt{2}$$
m

530 (d)

$$v = \sqrt{49 + y}, a = \frac{dv}{dy}. \frac{dy}{dt} = v \frac{dv}{dy}$$
$$= (49 + y)^{1/2} \times \frac{1}{2} (49 + y)^{1/2 - 1} = \frac{1}{2} \text{ms}^{-2}$$

531 (a)

When two particles moves towards each other

$$v_1 - v_2 = 6$$
 ...(i

When these particles moves in the same direction

$$v_1 - v_2 = 4$$
 ...(ii)

By solving $v_1 = 5$ and $v_2 = 1$ m/s

532 (d)

In 's-t' graph (positive -time)

The straight line parallel with time axis represent |539 (c) state of rest

533 (a)

$$H_{\rm max} \propto u^2 :: u \propto \sqrt{H_{\rm max}}$$

i.e. to triple the maximum height, ball should be thrown with velocity $\sqrt{3} u$

534 (c)

For first case
$$v^2 - 0^2 = 2gh \Rightarrow (3)^2 = 2gh$$

For second case $v^2 = (-u)^2 + 2gh = 4^2 + 3^2$: $v = 5km/h$

535 (c)

Let man will catch the bus after 't'sec. So he will cover distance ut

Similarly distance travelled by the bus will be $\frac{1}{2}at^2$

For the given condition

$$u t = 45 + \frac{1}{2}a t^2 = 45 + 1.25t^2$$
 [As $a = 2.5 m/s^2$]

$$\Rightarrow u = \frac{45}{t} + 1.25t$$

To find the minimum value of u

$$\frac{du}{dt} = 0$$
 sp we get $t = 6$ sec then,

$$u = \frac{45}{6} + 1.25 \times 6 = 7.5 + 7.5 = 15 \,\text{m/s}$$

536 (a)

From the equation of motion

$$S = ut + \frac{1}{2} at^2$$

$$S_1 = 0 + \frac{1}{2} a(P-1)^2$$

And $S_2 = 0 + \frac{1}{2} a P^2$

From
$$S_n = u + \frac{a}{2}(2n-1)$$

$$S_{(P^2-P+1)}^{th} = \frac{a}{2} [2(P^2-P+1)-1]$$
$$= \frac{a}{2} [2P^2-2P+1] = S_1 + S_2$$

537 (d)

Time of flight
$$T = \frac{2u}{a} 4 \sec \Rightarrow u = 20 \text{ m/s}$$

538 (c)

$$h = \frac{1}{2}gt^2 \Rightarrow t = \sqrt{2h/g}$$

$$t_a = \sqrt{\frac{2a}{g}}$$
 and $t_b = \sqrt{\frac{2b}{g}} \Rightarrow \frac{t_a}{t_b} = \sqrt{\frac{a}{b}}$

For upward motion

Effective acceleration = -(g + a)

And for downward motion

Effective acceleration = (g - a)

But both are constants. So the slope of speed-time graph will be constant

540 (b)

$$H_{\text{max}} = \frac{u^2}{2a} = \frac{19.6 \times 19.6}{2 \times 9.8} = 19.6 \text{ m}$$

$$v = \frac{dx}{dt} = \frac{d}{dt} \left[\frac{k}{b} (1 - e^{-bt}) \right] = \frac{k}{b} [0 - (-b)e^{-bt}]$$
$$= ke^{-bt}$$

542 (b)

$$v = u + at = u + \left(\frac{F}{m}\right)t = 20 + \left(\frac{100}{5}\right) \times 10$$
$$= 220 \text{ m/s}$$

543 (c)

$$h = \frac{1}{2}gt^2$$
, (parabolic)

v = -gt and after the collision, v = gt (straight line)

Collision is perfectly elastic then ball reaches to same height again and again with same velocity

545 (d)

Displacement (in magnitude)

$$=\frac{1}{2}(3\times2-\frac{1}{2}\times1\times2+1\times1)$$
m=3m

546 (d)

$$h = ut - \frac{1}{2}gt^2$$
$$= 10 \times 1 - \frac{1}{2} \times 10 \times 1$$
$$= 10 - 5 = 5m$$

547 (c)

CLICK HERE (>>

In order that the man catches the bus, let his minimum velocity be v, then from equation of motion.

$$v^2 = u^2 + 2as$$

We have, u = 0, $a = 2.5 \text{ ms}^{-2}$, s = 45 m

$$v^2 = 2 \times 2.5 \times 45$$

$$\Rightarrow v = \sqrt{225} = 15 \text{ ms}^{-1}$$

548 (a)

$$S_n = u + \frac{a}{2}[2n - 1]$$

$$S_{5th} = 7 + \frac{4}{2}[2 \times 5 - 1] = 7 + 18 = 25m$$

549 (c)

Maximum height of ball = 5 m

So velocity of projection $\Rightarrow u = \sqrt{2gh} = 10 \text{ m/s}$

Time interval between two balls (time of ascent)

$$=\frac{u}{g}=1\ sec=\frac{1}{60}\ min$$

So number of ball thrown per min = 60

550 (a)

$$9y = \frac{1}{2} \times 10 \times 3 \times 3 \text{ or } y = 5\text{m}$$

Again,
$$n \times 5 = \frac{1}{2} \times 10 \times 1 \times 1 = 5$$
 or $n = 1$

551 (a)

$$t = \sqrt{\frac{2h}{g}} \Rightarrow \frac{t_1}{t_2} = \sqrt{\frac{h_1}{h_2}} = \sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}}$$

552 (c)

$$v_{av} = \frac{2v_1v_2}{v_1 + v_2} = \frac{2 \times 40 \times 60}{100} = 48 \text{ kmph}$$

553 (a)

 $v = \sqrt{3x + 16}$ or $v^2 = 3x + 16$ or $v^2 - 16 = 3x$ Comparing with $v^2 - u^2 = 2aS$, we get, u = 4units, 2a = 3

or a = 1.5 units.

554 (b)

$$\int_{0}^{x} dx = \int_{0}^{1} (v_0 + gt + ft^2) dt$$
$$x = v_0 + g\left(\frac{1}{2}\right) + f\left(\frac{1}{3}\right)$$

555 **(b)**

$$v = g \times t = 32 \times 1 = 32ft/sec$$

556 (b

Average speed is the ratio of distance to time taken

Distance travelled from 0 to 5s = 40 m

Distance travelled from 5 to 10s = 0 m

Distance travelled from 10 to 15s = 60 m

Distance travelled from 15to 20s = 20

So, total distance = 40 + 0 + 60 + 20 = 120 m

Total time taken = 20 minutes

Hence, average speed

$$= \frac{\text{distance travelled } (m)}{\text{time (min)}} = \frac{120}{20} = 6 \text{ m/min}$$

557 (a)

Here, u = 0, a = g

Distance travelled in n^{th} second is given by

$$D_n = u + \frac{a}{2}(2n-1) :: D_n \propto (2n-1)$$

$$\therefore D_1: D_2: D_3: D_4: D_5 \dots = 1: 3: 5: 7: 9: \dots$$

558 (c)

Given,
$$v = (180 - 16x)^{1/2}$$

Or
$$v^2 = 180 - 16x$$

Differentiating with respect to t, we get

$$2v\frac{dv}{dt} = 0 - 16\frac{dx}{dt}$$

$$2v\frac{dv}{dt} = -16v$$

$$\Rightarrow \frac{dv}{dt} = -8$$

Hence, particle decelerates at the rate of 8 ms⁻².

559 (a)

$$S_n = u + \frac{a}{2}[2n - 1]$$

$$S_{5^{th}} = 7 + \frac{4}{2}[2 \times 5 - 1] = 7 + 18 = 25m$$

560 **(c)**

$$v^2 = u^2 + 2as$$

$$0 = \left(50 \times \frac{5}{18}\right)^2 + 2a \times 6$$

$$a = -16 \text{ ms}^{-2}$$
 ($a = \text{retardation}$)

Again, $v^2 = u^2 + 2as$

$$0 = \left(100 \times \frac{5}{18}\right)^2 - 16 \times 2 \times s$$

$$s = \frac{(100 \times 5)^2}{18 \times 18 \times 32} = 24.1 \approx 24 \text{ m}$$

561 (c)

$$S_n = \frac{1}{2}g\cos\theta (2n-1), S_{n+1}$$

$$= \frac{1}{2}g\cos\theta \{2(n+1) - 1\}$$

$$S_n = 2n - 1$$

$$\frac{S_n}{S_{n+1}} = \frac{2n-1}{2n+1}$$

562 (c)

$$v = \frac{\text{Total distance}}{\text{Time taken}} = \frac{x}{\frac{x/3}{v} + \frac{x/3}{3v} + \frac{x/3}{2v} + \frac{18}{11}v}$$

Slope of displacement time graph is negative only at point time E

565 (d)

Let the man will be able to catch the bus after t s

$$10t = 48 + \frac{1}{2} \times 1 \times t^2$$

$$t^2 - 20t + 96 = 0$$

$$(t-12)(t-8) = 0$$

$$t = 8s \text{ and } t = 12s$$

Thus the man will be able to catch the bus after 8s

566 (a)

$$v_1 - v_2 = at$$

or $t = \frac{v_1 - v_2}{a}$.

567 (c)

Second law of motion gives

$$h = ut + \frac{1}{2}gT^2$$

or
$$h = 0 + \frac{1}{2}gT^2 \ (\because u = 0)$$

$$\therefore T = \sqrt{\left(\frac{2h}{g}\right)}$$

$$s = 0 + \frac{1}{2}g\left(\frac{T}{2}\right)^2$$

 $t = \frac{T}{2}s$,

Or
$$s = \frac{1}{2}g \cdot \frac{T^2}{9}$$

Or
$$s = \frac{g}{18} \times \frac{2h}{g}$$
 $\left(\because T = \sqrt{\frac{2h}{g}}\right)$

$$\therefore \qquad \qquad s = \frac{h}{9} \, \mathrm{m}$$

Hence, the position of ball from the ground

$$=h-\frac{h}{9}=\frac{8h}{9}$$
 m.

568 (c)

Displacement of the particle will be zero because it comes back to its starting point

Average speed =
$$\frac{\text{Total distance}}{\text{Total time}} = \frac{30m}{10sec}$$

= $3 m/s$

569 (a)

We know that the velocity of body is given by the slope of displacement - time graph so it is clear that initially slope of the graph is positive and after some time it becomes zero (corresponding to the peak of graph) and it will become negative

570 (d)

Slope of line = $-\frac{2}{3}$

Equation of line is $(v - 20) = -\frac{2}{3}(s - 0)$

$$\Rightarrow v = 20 - \frac{2}{3}s$$
 ...(i)

Velocity at s = 15m ie,

$$v = \frac{ds}{dt}\Big|_{s=15\text{m}} = 20 - \frac{2}{3}(15) = 10\text{ms}^{-1}$$

Differentiate Eq. (i) with respect to time,

$$acceleration = \frac{dv}{dt} = \frac{2}{3} \frac{ds}{dt}$$

acceleration =
$$\frac{dv}{dt} = \frac{2}{3} \frac{ds}{dt}$$

$$\therefore \frac{dv}{dt}\Big|_{s=15\text{m}} = -\frac{2}{3} \frac{ds}{dt}\Big|_{s=15\text{m}} = -\frac{20}{3} \text{ms}^{-2}$$

571 (b)

Let *u* be the initial upward velocity of the ball from *A* and let *h* be the height of the tower. Taking the downward motion of the first stone from A to the ground, we have

$$h = -ut_1 + \frac{1}{2}gt_1^2$$
 ...(i)

Taking the downward motion of the second stone from A to the ground, we have

$$h = ut_2 + \frac{1}{2}gt_2^2$$
 ...(ii)

Multiplying Eq.(i) t_2 and Eq. (ii) by t_1 and adding

$$h(t_1 + t_2) = \frac{1}{2}gt_1t_2(t_1 + t_2)$$

So,
$$h = \frac{1}{2}gt_1t_2$$
 ...(iii)

For falls under gravity from the top of the tower

$$h = \frac{1}{2}gt_3^2$$
 ...(iv)

From Eqs. (iii) and (iv), $t_3^2 = t_1 t_2$ or $t_3 = \sqrt{t_1 t_2}$ = $\sqrt{6 \times 4} = 6$ s

572 (c)

Since direction of v is opposite to the direction of g and h so from equation of motion

$$h = -vt + \frac{1}{2}gt^2 \Rightarrow gt^2 - 2vt - 2h = 0$$

$$\Rightarrow t = \frac{2v \pm \sqrt{4v^2 + 8gh}}{2g} \Rightarrow t = \frac{v}{g} \left[1 + \sqrt{1 + \frac{2gh}{v^2}} \right]$$

573 (c)

$$y = a + bt + ct^2 - dt^4$$

$$\therefore v = \frac{dy}{dt} = b + 2ct - 4dt^3 \text{ and } a = \frac{dv}{dt} = 2c - 12dt^2$$

Hence, at t = 0, $v_{\text{initial}} = b$ and $a_{\text{initial}} = 2c$

574 (b)

Power,
$$P = \frac{w}{t}$$

 $P = \frac{Fs}{t}$, $P = \frac{mas}{t}$ (: $F = ma$)
 $P = \frac{mvs}{t^2}$, (: $a = \frac{v}{t}$)
 $P = \frac{ms \cdot s}{t^3}$ (: $v = \frac{s}{t}$)
 $Pt^2 = ms^3$
: $s \propto t^{3/2}$

575 (b)

Relative velocity of bird w.r.t. train = 25 + 5 = 30 m/s

Time taken by the bird to cross the train $t = \frac{210}{30} = 7$ sec

577 (b)

$$t = \sqrt{\frac{2h}{g}} \Rightarrow \frac{t_1}{t_2} = \sqrt{\frac{h_1}{h_2}}$$

578 (c)

Time taken by the body to reach the point A is t_1 (During upward journey).

The body crosses this point again (during downward journey) after t_2 , ie, the body takes the time (t_2-t_1) to come again at point A.

So, the time taken by the body to reach at point *B* (a maximum height).

$$t = t_1 \left(\frac{t_2 - t_1}{2} \right)$$

[: Time pf ascending = Time of descending]

$$t = \frac{t_1 + t_2}{2}$$

So, maximum height $H = \frac{1}{2} gt^2$

$$=\frac{1}{2}\operatorname{g}\left(\frac{t_1+t_2}{2}\right)^2$$

$$=2g\left(\frac{t_1+t_2}{4}\right)^2$$

579 **(b)**

$$v = u + at$$
 As $u = 0$, $v = at$

The graph (b) is correct as v = 0 at t = 0, and in the straight line graph y = mx, y = v, m = a and t = x

580 (c)

$$v^2 = u^2 + 2as$$
, If $u = 0$, then $v^2 \propto S$
i. e., Graph should be parabola symmetric to displacement axis

581 (b)

Let height of minaret is H and body take time T to fall from top to bottom

$$H = \frac{1}{2}gT^2$$
 ...(i)

In last 2 sec body travels distance of 40 m so in (T-2) sec distance travelled = (H-40)m

$$(H-40) = \frac{1}{2}g(T-2)^2$$
 ...(ii)

By solving (i) and (ii), T = 3 sec and H = 45m

582 (b)

Distance travelled by train in first 1 *hour* is 60 km and distance in next 1/2 hour is 20 km. So Average speed = $\frac{\text{Total distance}}{\text{Total time}} = \frac{60+20}{3/2}$ = 53.33 km/hour

583 (b)

$$h_n = \frac{g}{2}(2n-1) \Rightarrow h_{5^{\text{th}}} = \frac{10}{2}(2 \times 5 - 1) = 45 \text{ m}$$

584 **(c**)

This person cannot walk straight more than 10 steps.

Distance covered in 10 steps $= 10 \times 0.8 = 8m$

As the person has to turn after every 10 steps, the only way to have maximum displacement is walk as shown in the figure.

The maximum displacement = AE = AC + CE= $8\sqrt{2} + 8\sqrt{2} = 16\sqrt{2}m$

585 (b)

Time taken by first drop to reach the ground $t = \frac{1}{2E}$

$$\sqrt{\frac{2h}{g}} \Rightarrow t = \sqrt{\frac{2 \times 5}{10}} = 1 \sec$$

As the water drops fall at regular intervals from a tap therefore time difference between any two drops = $\frac{1}{2}$ sec

In this given time, distance of second drop from

the tap =
$$\frac{1}{2}g\left(\frac{1}{2}\right)^2 = \frac{10}{8} = 1.25 m$$

Its distance from the ground = 5 - 1.25 = 3.75m

586 (d)

Since c >> v (negligible)

587 (d)

Average speed =
$$\frac{\text{Total distance travelled}}{\text{Total time taken}}$$
$$= \frac{x}{\frac{2x/5}{v_1} + \frac{3x/5}{v_2}} = \frac{5v_1v_2}{3v_1 + 2v_2}$$

588 (b)

Time =
$$\frac{\text{Total length}}{\text{Relative velocity}} = \frac{50 + 50}{10 + 15} = \frac{100}{25}$$

589 **(d**)

Average velocity=
$$\frac{3x}{\frac{x}{60} + \frac{x}{20} + \frac{x}{10}} = \frac{3x}{\frac{x+3x+6x}{60}}$$

= $\frac{3x \times 60}{10x} = 18 \text{kmh}^{-1}$
= $\frac{18 \times 5}{18} \text{ms}^{-1} = 5 \text{ms}^{-1}$

590 (a)

If t_1 and t_2 are the time taken by particle to cover first and second half distance respectively.

$$t_1 = \frac{x/2}{3} = \frac{x}{6}$$

$$x_1 = 4.5t_2$$
 and $x_2 = 7.5t_2$

So,
$$x_1 + x_2 = \frac{x}{2}$$

$$\Rightarrow \ 4.5t_2 + 7.5t_2 = \frac{x}{2}$$

$$t_2 = \frac{x}{24}$$

Total time $t = t_1 + 2t_2 = \frac{x}{6} + \frac{x}{12} = \frac{x}{4}$

So, average speed = 4 m/s

591 (a)

$$\vec{r} = 20\hat{\imath} + 10\hat{\jmath} : r = \sqrt{20^2 + 10^2} = 22.5 \, m$$

593 (a)

$$v = \sqrt{2 \times 9.8 \times 100} = \sqrt{1960} \text{ms}^{-1}$$

 $\frac{\sqrt{1960} + 0}{2} = \frac{2}{t} \text{ or } t = \frac{4}{\sqrt{1960}} \text{s} = \frac{4}{44.27} \text{s} = 0.09 \text{s}$

594 (a)

$$S_n = u + \frac{a}{2}(2n - 1) \Rightarrow S_3 = 0 + \frac{4/3}{2}(2 \times 3 - 1)$$

 $\Rightarrow S_3 = \frac{10}{3}m$

595 (b)

$$\frac{\overrightarrow{v_{ct}}}{\overrightarrow{v_{ct}}} = \frac{\overrightarrow{v_c} - \overrightarrow{v_t}}{\overrightarrow{v_{ct}}}
\overrightarrow{v_{ct}} = \frac{\overrightarrow{v_c} + (-\overrightarrow{v_t})}{\overrightarrow{v_{ct}}}$$

Velocity of car w.r.t. train (v_{ct}) is towards West-North

596 (d)

Body reaches the point of projection with same velocity

597 (c)

In first case:
$$s_1 = ut_1 + \frac{1}{2}at_1^2$$

$$200 = 2u + 2a \quad (\because t_1 = 2s)$$

$$u + a = 100$$
 ...(i)

In second case: $s_2 = ut_2 + \frac{1}{2}at_2^2$

$$420 = 6u + 18a$$
 (: $t_2 = 2 + 4 + 6s$)

$$3a + u = 70$$
 ...(ii)

Solving Eqs. (i) and (ii), we get

$$a = -15 \text{ms}^{-2}$$

and $u = 115 \text{cms}^{-1}$

$$v = u + at$$

$$= 115 - 15 \times 7 = 10 \text{cms}^{-1}$$

598 (b)

$$\frac{dv}{dt} = a - bv$$

or
$$\int_0^v \frac{dv}{a-bv} = \int_0^t dt$$

or
$$-\frac{1}{b}[\log(a-bv)]_0^v = t$$

or
$$\left(\frac{a-bv}{a}\right) = e^{-bt}$$

or
$$a - \frac{b}{a}v = e^{-bt}$$

$$v = \frac{a}{b}(1 - e^{-bt})$$

Speed of stone in a vertically upward direction is 20m/s. So for vertical downward motion we will consider $u = -20 \ m/s$

$$v^2 = u^2 + 2gh = (-20)^2 + 2 \times 9.8 \times 200$$

= 4320 m/s

$$v \simeq 65m/s$$

600 (b)

$$u = 12 \text{ms}^{-1}, g = 9.8 \text{ms}^{-2}, t = 10s$$

 $S = \left(12 \times 10 + \frac{1}{2} \times 9.8 \times 10 \times 10\right) \text{m}$
 $= (120 + 4.9 \times 100) \text{m} = 610 \text{m}$

$$V_{av} = \frac{S+S}{\frac{S}{v_1} + \frac{S}{v_2}} = \frac{2v_1v_2}{v_1 + v_2}$$

602 (c)

Acceleration of the body along AB is $g \cos \theta$ Distance travelled in time $t \ sec = AB =$

$$\frac{1}{2}(g\cos\theta)t^2$$

From $\triangle ABC$, $AB = 2R \cos \theta$; $2R \cos \theta = \frac{1}{2}$

$$\frac{1}{2}g\cos\theta t^2$$

$$\Rightarrow t^2 = \frac{4R}{g} \text{ or } t = 2\sqrt{\frac{R}{g}}$$

603 (c)

For shortest possible path man should swim with an angle $(90 + \theta)$ with downstream

From the fig,

$$\sin\theta = \frac{v_r}{v_m} = \frac{5}{10} = \frac{1}{2}$$

$$\Rightarrow : \theta = 30^{\circ}$$

So angle with downstream = $90^{\circ} + 30^{\circ} = 120^{\circ}$

604 (d)

Given, acceleration $a = -kv^3$

Initial velocity at cut-off, $v_1 = v_0$

Initial time of cut-off, t = 0

And final time after cut-off, $t_2 = t$

Again,
$$a = \frac{dv}{dt} = -kv^3$$

Or
$$\frac{dv}{v^3} = -kdt$$

Integrating both sides, with in the condition of motion.

$$\int_{v_0}^{v} \frac{dv}{v^3} = -\int_0^t k \ dt$$

Or
$$\left[-\frac{1}{2v^2} \right]_{v_0}^v = -[kt]_0^t$$

Or
$$\frac{1}{2v^2} - \frac{1}{2v_0^2} = kt$$

Or
$$v = \frac{v_0}{\sqrt{1 + 2 kt \, v_0^2}}$$

605 **(c)**

$$v = \frac{\text{Total distance}}{\text{Time taken}} = \frac{x}{\frac{x/3}{v} + \frac{x/3}{3v} + \frac{x/3}{2v} + \frac{18}{11}v}$$

606 (b)

$$\frac{|\text{Average velocity}|}{|\text{Average speed}|} = \frac{|\text{displacement}|}{|\text{distance}|} \le 1$$

Because displacement will either be equal or less than distance. It can never be greater than distance

607 (d)

$$u = 200 \, m/s, v = 100 \, m/s, s = 0.1 \, m$$
$$a = \frac{u^2 - v^2}{2s} = \frac{(200)^2 - (100)^2}{2 \times 0.1} = 15 \times 10^4 \, m/s^2$$

608 (a)

$$h = -vt + \frac{1}{2}gt^{2} \text{ or } ft^{2} - 2vt - h = 0$$

$$t = \frac{-(-2v) \pm \sqrt{4v^{2} + 4gh}}{2g} = \frac{2v \pm 2\sqrt{v^{2} + gh}}{2g}$$

$$= \frac{v}{g} \pm \frac{[v^{2} + 2gh]^{1/2}}{g} = \frac{v}{g} \left[1 \pm \sqrt{1 + \frac{2gh}{v^{2}}} \right]$$

Now, retain only the positive sign.

609 (b)

There,
$$x_2 = vt$$
 and $x_1 = \frac{at^2}{2}$

$$x_1 - x_2 = -\left(vt - \frac{at^2}{2}\right)$$

So, the graph would be like.

For one dimensional motion along a plane
$$S = ut + \frac{1}{2}at^2 \Rightarrow 9.8 = 0 + \frac{1}{2}g\sin 30^{\circ}t^2 \Rightarrow t$$
$$= 2\sec$$

611 (b)

The time of fall is independent of the mass

612 (c)

Taking the starting point as 0, we have 30 m north OA, 20 m east AB, and finally $30\sqrt{2}$ m(S-W)BD.

From $\triangle CAB$,

$$AC = 20 \text{ m}, OC = 10 \text{ m}$$

In \triangle OCD,

$$OD = OC, OD = 10 \text{ m}$$

Hence, final displacement from origin is 10 m.

613 (b)

Distance = Area under
$$v - t$$
 graph = $A_1 + A_2 + A_3 + A_4$

$$= \frac{1}{2} \times 1 \times 20 + (20 \times 1) + \frac{1}{2}(20 + 10) \times 1 + (10 \times 1)$$
$$= 10 + 20 + 15 + 10 = 55m$$

615 (c)

Let \vec{a}_{rel} = acceleration of ball with respect to ground - acceleration of bus with respect to ground

$$= -g\hat{j} - a\hat{j}$$

$$|\vec{a}_{rel}| = \sqrt{g^2 + a^2}$$

Hence, (c) is correct.

616 (a)

$$S = ut + \frac{1}{2}gt^2$$

$$30 = -25t + \frac{10}{2}t^2 \text{ or } t^2 - 5t - 6 = 0$$

Or
$$(t-6)(t+1) = 0$$
 Take positive root $\therefore t = 6 \text{ sec}$

617 (a)

Taking initial position as origin and direction of motion (ie, vertically up) as positive. As the particle is thrown with initial velocity, at highest point its velocity is zero and then it returns back to its reference position. This situation is best depicted in figure of option (a).

In figure, AB part denotes upward motion and BC part denotes downward motion.

618 (a)

Distance b/w the cars A and B remains constant. Let the distance be 'x'

Velocity of C w.r.t. A and B V = 45 + 36 = $81 \, km/h$

Distance = $81 \times \frac{5}{60} = 6.75 \ Km$

619 (c)

Height =
$$\frac{1}{2}(12 + 8)3.6$$
m=36m

At maximum height velocity v=0

We know that v = u + at, hence

$$0 = u - gT \Rightarrow u = gT$$

When
$$v = \frac{u}{2}$$
, then

$$\frac{u}{2} = u - gt \Rightarrow gt = \frac{u}{2} \Rightarrow gt = \frac{gT}{2} \Rightarrow t = \frac{T}{2}$$

Hence at $t = \frac{T}{2}$, it acquires velocity $\frac{u}{2}$

621 (d)

$$\frac{\tan 30^{\circ}}{\tan 45^{\circ}} = \frac{1}{\sqrt{3}} + 1 = 1:\sqrt{3}$$

622 (c)

Parachute bails out at height H from ground. Velocity at A

$$v = \sqrt{2 gh}$$

$$=\sqrt{2 \times 9.8 \times 50} = \sqrt{980} \text{ms}^{-1}$$

The velocity at ground $v_1 = 3 \text{ ms}^{-1}$ (given)

Acceleration = -2 ms^{-2} (given_

$$\therefore H - h = \frac{v^2 - v_1^2}{2 \times 2}$$
$$= \frac{980 - 9}{4} = \frac{971}{4} = 242.75$$

$$H = 242.75 + h$$

$$= 242.75 + 50 = 293 \text{ m}$$

623 (c)

$$h = ut + \frac{1}{2}gt^2, t = 3 \text{ sec}, u = -4.9m/s$$

 $\Rightarrow h = -4.9 \times 3 + 4.9 \times 9 = 29.4 \text{ m}$

624 (d)

This problem can be solved by using the concept of relative velocity

$$v + 30 = 75$$

or
$$v = 45 \text{km} \text{h}^{-1}$$

625 (d)

As
$$v = 0 + na$$

$$\Rightarrow a = \frac{v}{n}$$

Now, distance travelled in n sec

$$\Rightarrow \qquad S_n = \frac{1}{2}an^2$$

Distance travelled in (n-2) sec

$$\Rightarrow S_{n-2} = \frac{1}{2} a(n-2)^2$$

Distance travelled in last 2 s,

$$S_n - S_{n-2} = \frac{1}{2} a n^2 - \frac{1}{2} a (n-2)^2$$

$$= \frac{a}{2} [n^2 - (n-2)^2]$$

$$= \frac{a}{2} [n + (n-2)] [n - (n-2)]$$

$$= a(2n-2) = \frac{v}{n} (2n-2) = \frac{2v(n-1)}{n}$$

626 **(b)**

Let s_1 be the distance travelled by train with acceleration 1ms^{-2} for time t_1 and s_2 be the distance travelled by train with retardation 3 ms^{-2} for time t_2 . If v is the velocity of train after time t_1 , then

$$v = 1 \times t_1$$
 ... (i)

And
$$s_1 = \frac{1}{2} \times 1 \times t_1^2 = \frac{t_1^2}{2}$$
 ... (ii)

$$v = 3t_2$$
 ... (iii)

And
$$s_2 = vt_2 - \frac{1}{2} \times 3 \times t_2^2$$

From Eqs. (i) and (iii),

$$t_1 = 3t_2$$
 or $t_2 = \frac{t_1}{3}$

$$\therefore s_1 + s_2 = \frac{t_1^2}{2} + t_1 \times \frac{t_1}{3} - \frac{3}{2} \times \frac{t_1^2}{9}$$
$$= \frac{2}{3}t_1^2$$
$$1215 = \frac{2}{3}t_1^2$$

$$t_1 = \sqrt{\frac{3 \times 1215}{2}} = 42.69 \text{ s}$$

Total time = $t_1 + t_2 = t_1 + \frac{t_1}{3} = 56.9 \text{ s}$

627 (a)

For the given condition initial height h=d and velocity of the ball is zero. When the ball moves downward its velocity increases and it will be maximum when the ball hits the ground & just after the collision it becomes half and in opposite direction. As the ball moves upward its velocity again decreases and becomes zero at height d/2. This explanation match with graph (A)

628 (d)

Since $x = 1.2t^2$ which is in form $x = \frac{1}{2}at^2$

Thus the motion is uniformly accelerated

629 (c)

In a straight line-path with constant velocity distance travelled = displacement

$$ie, s = D$$

630 (c)

Let both balls meet at point P after time t

The distance travelled by ball A, $h_1 = \frac{1}{2}gt^2$

The distance travelled by ball B, $h_2=ut-\frac{1}{2}gt^2$

$$h_1 + h_2 = 400 \, m \Rightarrow ut = 400, t = 400/50$$

= 8 sec

 $h_1 = 320m \text{ and } h_2 = 80m$

631 **(c**)

The displacement of the particle is determined by the area bounded by the curve. This area is

$$s = \frac{\pi}{4} v_m t_0$$

The average velocity is

$$< v > = \frac{s}{t_0} = \frac{\pi}{4} v_m$$

Such motion cannot be realized in practical terms since at the initial and final moment, the acceleration (which is slope of v-t) is infinitely large. Hence, both (i) and (ii) are correct.

632 (d)

At highest point v = 0 and $H_{\text{max}} = \frac{u^2}{2g}$

633 (c)

Acceleration =
$$a = \frac{dv}{dt} = 0.1 \times 2t = 0.2t$$

Which is time dependent *i.e.* non-uniform acceleration

634 (b)

If acceleration is variable (depends on time) then $a t^{2}$

$$v = u + \int (f)dt = u + \int (a t)dt = u + \frac{a t^2}{2}$$

635 (a)

During upward motion the velocity is decreasing while during downward motion the velocity is increasing in downward direction.

The graph plot is as shown.

636 (c)

$$x = at + bt^2 - ct^3, a = \frac{d^2x}{dt^2} = 2b - 6ct$$

637 (c)

Since direction of v is opposite to the direction of g and h so from equation of motion

$$h = -vt + \frac{1}{2}gt^2 \Rightarrow gt^2 - 2vt - 2h = 0$$

$$\Rightarrow t = \frac{2v \pm \sqrt{4v^2 + 8gh}}{2g} \Rightarrow t = \frac{v}{g} \left[1 + \sqrt{1 + \frac{2gh}{v^2}} \right]$$

638 **(b)**

$$t = \sqrt{\frac{2h}{g}} \Rightarrow \frac{t_1}{t_2} = \sqrt{\frac{h_1}{h_2}}$$

639 (b)

Let A and B will meet after time t sec. it means the distance travelled by both will be equal $S_A = ut = 40t$ and $S_B = \frac{1}{2}at^2 = \frac{1}{2} \times 4 \times t^2$

$$S_A = S_B \Rightarrow 40t = \frac{1}{2}4t^2 \Rightarrow t = 20 sec$$

640 (c)

For first case $v^2 - 0^2 = 2gh \Rightarrow (3)^2 = 2gh$ For second case $v^2 = (-u)^2 + 2gh = 4^2 + 3^2$: v = 5km/h

641 (a)

When the body is projected vertically upward then at the highest point its velocity is zero but acceleration is not equal to zero $(g = 9.8m/s^2)$

642 (d)

An aeroplane flies 400m north and 300m south so the net displacement is 100m towards north.

Then it flies 1200m upward so $r = \sqrt{(100)^2 + (1200)^2}$

$$= 1204 \text{ m} \simeq$$

1200 m

643 (c)

Maximum height of ball = 5 m

So velocity of projection $\Rightarrow u = \sqrt{2gh} = 10 \ m/s$

Time interval between two balls (time of ascent)

$$=\frac{u}{g}=1~sec=\frac{1}{60}~min$$

So number of ball thrown per min = 60

644 (d)

u = 0, S = 250m, t = 10sec

$$S = ut + \frac{1}{2}at^2 \Rightarrow 250 = \frac{1}{2}a[10]^2 \Rightarrow a = 5m/s^2$$

So, $F = ma = 0.9 \times 5 = 4.5N$

645 (d)

As
$$v^2 = u^2 + 2as \Rightarrow (2y)^2 = u^2 + 2as \Rightarrow = 3u^2$$

Now, after covering an additional distance *s*, if velocity becomes *v*,then,

$$v^2 = u^2 + 2a(2s) = u^2 + 4as = u^2 + 6u^2 = 7u^2$$

$$v = \sqrt{7}u$$

646 (c)

$$S = \frac{1}{2} \times 1 \times 20 + 1 \times 20 + \frac{1}{2} \times (20 + 10) \times 1 + 1$$

$$\times 10$$

= 55m

647 (a)

If u is the initial velocity then distance covered by it in 2 sec

$$S = ut + \frac{1}{2}at^2 = u \times 2 + \frac{1}{2} \times 10 \times 4$$
$$= 2u + 20 \quad \dots (i)$$

Now distance covered by it in 3rd sec

$$S_{3^{\text{rd}}} = u + \frac{1}{2}(2 \times 3 - 1)10$$

= $u + 25$... (ii

From (i) and (ii), $2u + 20 = u + 25 \Rightarrow u = 5$ $\therefore S = 2 \times 5 + 20 = 30 \text{ m}$

648 (a)

At time t

$$\begin{array}{c}
B & \downarrow u_A = 0 \\
\downarrow u_A = u
\end{array}$$

Velocity of A, $v_A = u - gt$ upward

Velocity of B, $v_B = gt$ downward

It we assume that height h is smaller than or equal to the maximum height reached by A, then at every instant v_A and v_B are in opposite directions

$$\therefore V_{AB} = v_A + V_B$$

= u - gt + gt [Speeds in opposite directions get added]

= u

649 (d)

For the round trip he should cross perpendicular to the river

 \therefore Time for trip to that side = $\frac{1km}{4km/hr} = 0.25hr$

To come back, again he take $0.25\ hr$ to cross the river. Total time is 30 min, he goes to the other bank and come back at the same point

650 (b)

Let car B catches, car A after t sec, then

$$60t + 2.5 = 70t - \frac{1}{2} \times 20 \times t^{2}$$

$$\Rightarrow 10t^{2} - 10t + 2.5 = 0 \Rightarrow t^{2} - t + 0.25 = 0$$

$$\therefore t = \frac{\sqrt{1 - 4 \times (0.25)}}{2} = \frac{1}{2}hr$$

651 (d)

The separation between the two bodies, two seconds after the release of second body

$$= \frac{1}{2} \times 9.8[(3)^2 - (2)^2] = 24.5 m$$

652 (d)

For the round trip he should cross perpendicular to the river

 \therefore Time for trip to that side = $\frac{1km}{4km/hr} = 0.25hr$

To come back, again he take $0.25\ hr$ to cross the river. Total time is 30 min, he goes to the other bank and come back at the same point

654 (a)

$$t = \sqrt{\frac{2 \times 19.6}{9.8}} = 2s ; 1.9 = \sqrt{\frac{2 \times h}{9.8}}$$

or $h = \frac{1.9 \times 1.9 \times 9.8}{2}$ m=17.689m

Required distance = 19.6 - 17.689 m = 1.9 m.

655 (a)

$$\sqrt{x} = t + 1$$

Squaring both sides, we get

$$x = (t+1)^2 = t^2 + 2t + 1$$

Differentiating it w.r.t time t, we get

$$\frac{dx}{dt} = 2t + 2$$

Velocity,
$$v = \frac{dx}{dt} = 2t + 2$$

656 (a)

The velocity of the particle is

$$\frac{dx}{dt} = \frac{d}{dt}(2 - 5t + 6t^2) = (0 - 5 + 12t)$$

For initial velocity t = 0, hence v = -5 m/s

657 (b)

Let time interval be chosen as 1 s

$$\frac{PA}{PB} = \frac{OA}{OB} = \frac{v_x}{v_y}$$

So, P(x, y) divides AB is the ratio v_x : v_y .

Using section formula,

$$x = \frac{v_x \times 0 + v_y \times v_x}{v_x + v_y} = \frac{v_x v_y}{v_x + v_y}$$

$$y = \frac{v_x v_y + v_y \times 0}{v_x + v_y} = \frac{v_x v_y}{v_x + v_y}$$

$$v = \sqrt{x^2 + y^2} = \sqrt{2} \frac{v_x v_y}{v_x + v_y}$$

Now, replace v_x by v_1 and v_y by v_2 .

$$v = \frac{\sqrt{2}v_1v_2}{v_1 + v_2}$$

658 (b)

Let $\vec{\mathbf{v}}_t$ = actual velocity of train

 \vec{v}_t = actual velocity of car

 \vec{v}_{tc} = relative velocity of train with respect to

$$\vec{v}_c = 25\hat{i}$$

and
$$\vec{v}_{tc} = 25\sqrt{3}\,\hat{j}$$

$$\vec{\mathbf{v}}_{tc} = \vec{\mathbf{v}}_t - \vec{\mathbf{v}}_c$$

$$\vec{\mathbf{v}}_t = \vec{\mathbf{v}}_{tc} + \vec{\mathbf{v}}_c$$

$$=25\sqrt{3}\hat{1}+25\hat{1}$$

$$v_t = \sqrt{(25\sqrt{3})^2 + (25)^2}$$
$$= 25\sqrt{4} = 50 \text{kmh}^{-1}$$

659 (a)

$$S \propto u^2 : \frac{S_1}{S_2} = \left(\frac{u_1}{u_2}\right)^2 \Rightarrow \frac{2}{S_2} = \frac{1}{4} \Rightarrow S_2 = 8 m$$

660 (d)

Total distance = 130 + 120 = 250 mRelative velocity = 30 - (-20) = 50 m/s

Hence t = 250/50 = 5 s

663 (a)

Average velocity =
$$\frac{2v_1v_2}{v_1+v_2}$$

Given, $v_{av} = 40 \text{ km/h}$, $v_1 = 60 \text{ km/h}$ and $v_2 = ?$

$$\therefore \quad 40 = \frac{2 \times 60 \times v_2}{60 + v_2}$$

$$80v_2 = 2400$$

$$v_2 = 30 \, \text{km/h}$$

664 (b)

If a in the relative acceleration, then

$$3 = \frac{1}{2}a \times 5 \times 5$$
 or $a = \frac{6}{25} \text{ms}^{-2}$

Again,
$$S = \frac{1}{2} \times \frac{6}{25} \times 10 \times 10 = 12 \text{m}$$

665 (d)

$$v_1 = \frac{u + v_1'}{2} = \frac{u + u + at_1}{2} = u + \frac{1}{2}at_1$$

$$v_2 = \frac{v_1' + v_2'}{2} = \frac{(u + at_1) + u + a(t_1 + t_2)}{2}$$

$$= u + at_1 + \frac{1}{2}at_2$$

$$v_3 = \frac{v_2' + v_3'}{2}$$

$$=\frac{(u+at_1+at_2)+u+a(t_1+t_2+t_3)}{2}$$

$$= u + at_1 + at_2 + \frac{1}{2}at_3$$

Then,
$$v_1 - v_2 = -\frac{1}{2}a(t_1 + t_2)$$

$$v_2 - v_3 = -\frac{1}{2}a(t_2 + t_3)$$

$$\therefore \frac{v_1 - v_2}{v_2 - v_3} = \frac{t_1 + t_2}{t_2 + t_3}$$

666 (b)

Relative velocity of bird w.r.t. train = 25 + 5 = 30 m/s

Time taken by the bird to cross the train $t = \frac{210}{30} = 7$ sec

667 (a)

Distance covered in 5th second

$$S_{5^{th}}=u+\frac{\alpha}{2}(2n-1)=0+\frac{\alpha}{2}(2\times 5-1)=\frac{9\alpha}{2}$$

and distance covered in 5 seco

$$S_5 = ut + \frac{1}{2}at^2 = 0 + \frac{1}{2} \times a \times 25 = \frac{25a}{2}$$
$$\therefore \frac{S_5^{th}}{S_5} = \frac{9}{25}$$

668 (b)

$$x = \frac{1}{t+5} \Rightarrow v = \frac{dx}{dt} = -\frac{1}{(t+5)^2}$$

Acceleration, $a = \frac{dv}{dt} = \frac{2}{(t+5)^3} \Rightarrow a \propto (\text{velocity})^{3/2}$

669 (a)

(a) Take vertically upward direction as positive and vertically downward direction as negative.

Time taken by the car to cover first half of the distance is

$$t_1 = \frac{100}{60}$$

Time taken by the car to cover speed half of the

$$t_2 = \frac{100}{v}$$

Average speed,
$$v_{av} = \frac{\text{Total distance travelled}}{\text{TOtal time taken}}$$

$$v_{av} = \frac{100 + 100}{t_1 + t_2} \Rightarrow 40 = \frac{200}{\frac{100}{60} + \frac{100}{v}}$$

$$v_{av} = \frac{100 + 100}{t_1 + t_2} \Rightarrow 40 = \frac{200}{\frac{100}{60} + \frac{100}{v}}$$

$$\frac{1}{60} + \frac{1}{v} = \frac{1}{20} \Rightarrow \frac{1}{v} = \frac{1}{20} - \frac{1}{60}$$

$$\frac{1}{v} = \frac{2}{60} = \frac{1}{30}$$

$$v = 30km \, h^{-1}$$

671 (d)

In 's-t' graph (positive -time)

The straight line parallel with time axis represent state of rest

672 (a)

Given line have positive intercept but negative slope. So its equation can be written as

$$v = -mx + v_0$$
(i) [where $m = \tan \theta = \frac{v_0}{x_0}$]

By differentiating with respect to time we get

$$\frac{dv}{dt} = -m\frac{dx}{dt} = -mv$$

Now substituting the value of v from eq. (i) we get

$$\frac{dv}{dt} = -m[-mx + v_0] = m^2x - mv_0 : a$$
$$= m^2x - mv_0$$

i.e. the graph between a and x should have positive slope but negative intercept on a-axis. So graph (a) is correct

673 (c)

$$\begin{split} h_{n^{th}} &= u - \frac{g}{2}(2n - 1) \\ h_{5^{th}} &= u - \frac{10}{2}(2 \times 5 - 1) = u - 45 \\ h_{6^{th}} &= u - \frac{10}{2}(2 \times 6 - 1) = u - 55 \\ \text{Given } h_{5^{th}} &= 2 \times h_{6^{th}}. \text{ By solving we get } u = 65 \text{ m/s} \end{split}$$

674 (b)

 $H_{\rm max} \propto u^2$, It body projected with double velocity then maximum height will become four times i.e.

675 (b)

$$v \propto \sqrt{h} : \frac{v_1}{v_2} = \sqrt{\frac{a}{b}}$$

So, (b) is the correct choice.

The velocity acquired by a body in falling freely from rest through height h is $\sqrt{2gh}$.

$$[u = 0, v =?, 'a' = g, 'S' = h, v^2 - u^2 = 2aS]$$

Here,
$$s_n = \frac{1}{n}an^2$$

 s_{nth} = distance travelled in n second – distance travelled in (n-1) second

$$=\left(\frac{2n-1}{2}\right)a$$

$$\therefore \frac{s_{nth}}{s_n} = \frac{2n-1}{n^2} = \frac{2}{n} - \frac{1}{n^2}$$

$$\mathbf{r}_i = (-3.0 \text{ m})\hat{\mathbf{i}} + (2.0 \text{ m})\hat{\mathbf{j}} + (8.0 \text{ m})\hat{\mathbf{k}}$$

$$r_f = (9.0 \text{ m})\hat{\mathbf{i}} + (2.0 \text{ m})\hat{\mathbf{j}} + (-8.0 \text{ m})\hat{\mathbf{k}}$$

 \therefore Displacement = $r_f - r_i$

=
$$[(9.0 \text{ m})\hat{\mathbf{i}} + (2.0 \text{ m})\hat{\mathbf{j}} + (-8.0 \text{ m})\hat{\mathbf{k}}]$$

$$-[(-3.0\text{m})\hat{\mathbf{i}} + (2.0\text{m})\hat{\mathbf{j}} + (8.0\text{m})\hat{\mathbf{k}}]$$

$$= [(12.0 \text{m})\hat{\mathbf{i}} - (16.0 \text{m})\hat{\mathbf{j}}]$$

679 (d)

$$A \Rightarrow \frac{u^2}{4} - u^2 = -2gh_1$$

$$B \Rightarrow \frac{u^2}{9} - u^2 = -2gh_2$$

$$C \Rightarrow \frac{u^2}{16} - u^2 = -2gh_3$$

Given
$$h_1 + h_2 = 100 m$$

 $\Rightarrow 50t = 100 \Rightarrow t = 2 sec$

681 (d)

Let acceleration is a and retardation is -2a

Then for acceleration motion

$$t_1 = \frac{v}{a}$$
 ...(i)

For retarding motion

$$t_2 = \frac{v}{2a}$$
 ...(ii)

Given
$$t_1 + t_2 = 9 \Rightarrow \frac{v}{a} + \frac{v}{2a} = 9 \Rightarrow \frac{3v}{2a} = 9 \Rightarrow \frac{v}{a} = 6$$

Hence, duration of acceleration, $t_1 = \frac{v}{a} = 6$ sec

682 (b)

$$a = \frac{dv}{dt} = 6t + 5$$
 or $dv = (6t + 5)dt$

Integrating it, we have

$$v = \frac{6t^2}{2} + 5t + C = 3t^2 + 5t + C$$

where C is constant of integration

When
$$v = 0$$
 so $c = 0$

$$v = \frac{ds}{dt} = 3t^2 + 5t$$
 or $ds = (3t^2 + 5t)dt$

Integrating it within the conditions of motion ie, as t changes from 0 to 1 s changes from 0 to s, we

have
$$s = t^3 + \frac{5t^2}{2} = 1 + \frac{5}{2} = 3.5$$
m.

683 **(b**)

Velocity of car w.r.t. train (v_{ct}) is towards West-North

684 (c)

Let student catch the bus after t sec. So it will cover distance ut

Similarly distance travelled by the bus will be $\frac{1}{2}at^2$ for the given condition

$$ut = 50 + \frac{1}{2}at^2 = 50 + \frac{t^2}{2} \quad [a = 1 \text{ m/s}^2]$$

$$\Rightarrow u = \frac{50}{t} + \frac{t}{2}$$

To find the minimum value of u

 $\frac{du}{dt} = 0$, so we get t = 10 sec, then u = 10 m/s

685 (c)

$$v^2 = u^2 + 2gh \Rightarrow v = \sqrt{u^2 + 2gh}$$

So for both the cases velocity will be equal

686 **(c)**

Instantaeneous velocity = $v = \frac{\Delta x}{\Delta t}$

By using the data from the table

$$v_1 = \frac{0 - (-2)}{1} = 2m/s, \quad v_2 = \frac{6 - 0}{1} = 6m/s$$

 $v_3 = \frac{16 - 6}{1} = 10m/s$

So, motion is non-uniform but accelerated

687 (d)

$$\vec{r} = 3t\hat{\imath} - t^2\hat{\jmath} + 4\hat{k}$$

Velocity,
$$\vec{v} = \frac{d\vec{r}}{dt} = \frac{d}{dt} (3t\hat{\imath} - t^2\hat{\jmath} + 4\hat{k}) = 3\hat{\imath} - 2t\hat{\jmath}$$

At
$$t = 5s \Rightarrow \vec{v} = 3\hat{\imath} - 10\hat{\jmath}$$

$$|\vec{v}| = \sqrt{(3)^2 + (-10)^2} = \sqrt{9 + 100} = \sqrt{109}$$

= 10.44 ms⁻¹

688 (c)

Let the stone falls through a height h in t s

Here,
$$u = 0$$
, $a = g$

Using
$$D_n = u + \frac{a}{2}(2n-1)$$

Distance travelled by the stone in the last second

15

$$\frac{9h}{25} = \frac{g}{2}(2t - 1) \quad [\because u = 0]$$
 ...(i)

Distance travelled by the stone in t s is

$$h = \frac{1}{2} gt^2$$
 [: $u = 0$] ...(ii)

Divide (i) by (ii), we get

$$\frac{9}{25} = \frac{(2t-1)}{t^2}$$

$$9t^2 = 50t - 25$$

$$9t^2 - 50t + 25 = 0$$

On solving, we get

$$t = 5s$$
 or $t = \frac{5}{9}s$

Substituting t = 5s in (ii), we get

$$h = \frac{1}{2} \times 9.8 \times (5)^2 = 122.5 m$$

689 (b)

Let initial velocity of the bullet = u

After penetrating 3 cm its velocity becomes $\frac{u}{2}$

From $v^2 = u^2 - 2as$

$$\left(\frac{u}{2}\right)^2 = u^2 - 2a(3)$$

$$\Rightarrow 6a = \frac{3u^2}{4} \Rightarrow a = \frac{u^2}{8}$$

Let further it will penetrate through distance x and stops at point C

For distance *BC*, v = 0, u = u/2, s = x, $a = u^2/8$

For
$$v^2 = u^2 - 2as \Rightarrow 0 = \left(\frac{u}{2}\right)^2 - 2\left(\frac{u^2}{8}\right) \cdot x \Rightarrow x = 0$$

1 cm

690 (b)

$$S_{3^{\text{rd}}} = 10 + \frac{10}{2}(2 \times 3 - 1) = 35 m$$

 $S_{2^{\text{nd}}} = 10 + \frac{10}{2}(2 \times 2 - 1) = 25 m \Rightarrow \frac{S_{3^{\text{rd}}}}{S_{2^{\text{nd}}}} = \frac{7}{5}$

691 (b)

Relative velocity of one train w.r.t. other

$$= 10 + 10 = 20m/s$$

Relative acceleration= $0.3 + 0.2 = 0.5m/s^2$

If train crosses each other then from $s = ut + \frac{1}{2}at^2$

$$As, s = s_1 + s_2 = 100 + 125 = 225$$

$$\Rightarrow 225 = 20t + \frac{1}{2} \times 0.5 \times 0.5 \times t^2$$

$$\Rightarrow 0.5t^2 + 40t - 450 = 0$$

$$\Rightarrow t = \frac{-40 \pm \sqrt{1600 + 4.(005) \times 450}}{1}$$

 $\therefore t = 10sec$ (Taking +ve value)

692 (a)

Time,
$$t = \sqrt{\frac{2h}{g}}$$

Distance from the foot of the tower

$$d=vt=v\sqrt{\frac{2h}{g}}$$

$$= 250 \text{ m}$$

When velocity =
$$\frac{v}{2}$$

And height of tower = 4h

Then, distance
$$x = \frac{v}{2} \sqrt{\frac{2(4h)}{g}}$$

$$x = v \sqrt{\frac{2h}{g}} = 250 \text{ m}$$

693 (c)

$$81 = -12t + \frac{1}{2} \times 10 \times t^2$$

or
$$5t^2 - 12t - 81 = 0$$

or
$$t = \frac{12 \pm \sqrt{144 + 4 \times 5 \times 81}}{2 \times 5}$$

$$= \frac{12 \pm \sqrt{1764}}{10} = \frac{12 \pm 42}{10} = \frac{54}{10} = 5.4s$$

[negative sign has been ignored]

694 (d)

Given
$$a = 19.6m/s^2 = 2g$$

Resultant velocity of the rocket after 5 sec

$$v = 2g \times 5 = 10g \, m/s$$

Height achieved after 5 sec, $h_1 = \frac{1}{2} \times 2g \times 25 =$

245m

On switching off the engine it goes up to height h_2 where its velocity becomes zero

$$0 = (10g)^2 - 2gh_2 \Rightarrow h_2 = 490m$$

 \therefore Total height of rocket = 245 + 490 = 735 m

695 (d)

Both trains will travel a distance of 1 km before to come in rest. In this case by using $v^2 = u^2 + 2as$ $\Rightarrow 0 = (40)^2 + 2a \times 1000 \Rightarrow a = -0.8 \, m/s^2$

696 (c)

$$h = \frac{1}{2}gt^2 \Rightarrow t = \sqrt{2h/g}$$

$$t_a = \sqrt{\frac{2a}{a}} \text{ and } t_b = \sqrt{\frac{2b}{a}} \Rightarrow \frac{t_a}{t_b} = \sqrt{\frac{a}{b}}$$

697 (d)

As
$$v^2 = u^2 + 2as \Rightarrow (2y)^2 = u^2 + 2as \Rightarrow = 3u^2$$

Now, after covering an additional distance s, if velocity becomes v, then,

$$v^2 = u^2 + 2a(2s) = u^2 + 4as = u^2 + 6u^2 = 7u^2$$

$$\therefore 12 = \sqrt{7}$$

698 (a)
$$S_n = u + \frac{g}{2}(2n-1)$$
; when $u = 0, S_1: S_2: S_3 = 0$

699 **(c)**

$$\frac{dx}{dt} = 2at - 3bt^2 \Rightarrow \frac{d^2x}{dt^2} = 2a - 6bt = 0 \Rightarrow t$$
$$= \frac{a}{3b}$$

700 (a)

The velocity of the particle is

$$\frac{dx}{dt} = \frac{d}{dt}(2 - 5t + 6t^2) = (0 - 5 + 12t)$$

For initial velocity t = 0, hence v = -5 m/s

701 (b)

Time of flight =
$$\frac{2u}{g} = \frac{2 \times 100}{10} = 20 \text{ sec}$$

702 **(b)**

$$h_1 = \frac{1}{2}gt^2, h_2 = 50t - \frac{1}{2}gt^2$$

$$\uparrow \quad \uparrow \quad u = 0$$

Given
$$h_1 + h_2 = 100 m$$

 $\Rightarrow 50t = 100 \Rightarrow t = 2 sec$

703 (a)

The distance covered by the ball during the last t seconds of its upward motion = Distance covered by it in first t seconds of its downward motion

From
$$h == ut + \frac{1}{2}gt^2$$

$$h = \frac{1}{2}g t^2$$
 [As $u = 0$ for it downward motion]

704 (c)

Let the velocity of the bullet when it strikes the target is $v \text{ cm s}^{-1}$.

After penetrating 30 cm, velocity becomes half $ie, \frac{v}{2}$.

From equation $v^2 = u^2 + 2as$

$$\therefore \qquad \left(\frac{v}{2}\right)^2 = v^2 + 2a \times 30$$

Or
$$-60a = v^2 - \frac{v^2}{4}$$

$$0r -60a = \frac{3v^2}{4}$$

$$a = -\frac{v^2}{80}$$
 cm s⁻²

Let the bullet further penetrates x cm before coming to rest, therefore

$$v'^2 = u'^2 + 2 as'$$

$$0 = \left(\frac{v}{2}\right)^2 + 2\left(-\frac{v^2}{80}\right)x$$

$$\frac{v^2x}{40} = \frac{v^2}{4}$$

$$x = 10 \text{ cm}$$

705 (d)

$$h = ut - \frac{1}{2}gt^2$$

$$= 10 \times 1 - \frac{1}{2} \times 10 \times 1$$

$$= 10 - 5 = 5m$$

706 (a)

For first stone u = 0 and

For second stone $\frac{u^2}{2g}4h \Rightarrow u^2 = 8gh$

$$\therefore u = \sqrt{8gh}$$

Now,
$$h_1 = \frac{1}{2}gt^2$$

$$h_2 = \sqrt{8ght - \frac{1}{2}gt^2}$$

$$u = \sqrt{8gh}$$

Where,t =time cross each other

$$\therefore h_1 + h_2 = h$$

$$\Rightarrow \frac{1}{2}gt^2 + \sqrt{8ght} - \frac{1}{2}gt^2 = h \Rightarrow t = \frac{h}{\sqrt{8gh}} = \sqrt{\frac{h}{8g}}$$

707 (d)

$$x \propto t^3 \therefore x = Kt^3$$

 $\Rightarrow v = \frac{dx}{dt} = 3Kt^2 \text{ and } a = \frac{dv}{dt} = 6Kt$

708 (b)

The distance traveled in last second

$$S_{\text{Last}} = u + \frac{g}{2}(2t - 1) = \frac{1}{2} \times 9.8(2t - 1)$$

= 4.9(2t - 1)

and distance traveled in first three second,

$$S_{\text{Three}} = 0 + \frac{1}{2} \times 9.8 \times 9 = 44.1 \, m$$

According to problem $S_{Last} = S_{Three}$ $\Rightarrow 4.9(2t-1) = 44.1 \Rightarrow 2t-1 = 9$ $\Rightarrow t = 5 sec$

709 (a)

Here,
$$u = 10 \text{ ms}^{-1}$$
, $t = 2s$, $S = 20 \text{ m}$

Using
$$S = ut + \frac{1}{2}at^2$$

$$\therefore 20 = 10 \times 2 + \frac{1}{2} \times a \times 2^2$$

$$0 = 2a \Rightarrow a = 0$$

710 (b)

Using
$$t = \sqrt{\frac{2h}{a}}$$
, $t \propto \sqrt{l}$, $\frac{t_2}{t_1} = \sqrt{\frac{l/4}{l}} = \frac{1}{2}$
or $t_2 = \frac{t_1}{2} = \frac{4}{2} = 2s$

711 (c)

Average velocity = $\frac{Displacement}{Time interval}$

A particle moving in a given direction with nonzero velocity cannot have zero speed.

In general, average speed is not equal to magnitude of average velocity. However, it can be so if the motion is along a straight line without change in direction

712 **(b)**

Let us solve the problem in terms initial velocity, relative acceleration and relative displacement of the coin with respect to floor of the lift.

$$u = 10 - 10 = \text{ms}^{-1}, a = 9.8 \text{ms}^{-2}, S = 4.9 \text{m}, t = ?$$

 $4.9 = 0 \times t + \frac{1}{2} \times 9.8 \times t^2 \text{ or } 4.9 t^2 = 4.9 \text{ or } t = 1 \text{s}$
 $15 = 30 - 10t \text{ or } 10t = 15 \text{ or } t = 1.5 \text{s}$

713 (a)

Given,
$$s = 1.2 \text{ m}, v = 640 \text{ ms}^{-1}, a =?, u = 0; t = ?$$

We have the third equation of motion

$$2as = v^2 - u^2$$

$$2a \times 1.2 = 640 \times 640$$

Or
$$a = \frac{8 \times 64 \times 10^3}{3}$$

And by first equation of motion

$$v = u + at$$

Or
$$t = \frac{v}{a} = \frac{15}{4} \times 10^{-3}$$
$$= 3.75 \times 10^{-3} \text{s} \approx 4 \text{ ms}$$

714 (c)

We know that,

$$s_t = u + \frac{1}{2}a(2t-1)$$

$$\therefore \qquad 65 = u + \frac{1}{2}a[10 - 1]$$

$$\Rightarrow$$
 65 = $u + \frac{9}{2} a$... (i)

Again, t = 9s and s = 105 m

$$\therefore 105 = u + \frac{1}{2}a[18 - 1]$$

Or
$$105 = u + \frac{17}{2}a$$
 ... (ii)

On substracting Eq. (i) from Eq. (ii)

$$105 - 65 = \frac{17}{2}a - \frac{9}{2}a$$

Or
$$40 = \frac{8}{2} a$$

Or
$$40 = 4a$$

Or
$$a = 10 \text{ ms}^{-2}$$

On putting the value of a in Eq. (i),

Or
$$65 = u + \frac{9}{2} \times 10$$

Or
$$65 = u + 45$$

Or
$$u = 20 \text{ ms}^{-1}$$

Now we know that from second equation of motion

$$s = ut + \frac{1}{2} at^2$$

$$s = 20 \times 20 + \frac{1}{2} \times 10 \times (20)^2$$

Or
$$s = 400 + 5 \times 400$$

Or
$$s = 2400 \text{ m}$$

715 (a)

When the stone is released from the balloon. Its

$$h = \frac{1}{2}at^2 = \frac{1}{2} \times 1.25 \times (8)^2 = 40 \text{ m}$$
 and velocity

$$v = at = 1.25 \times 8 = 10 \, m/s$$

Time taken by the stone to reach the ground

$$t = \frac{v}{g} \left[1 + \sqrt{1 + \frac{2gh}{v^2}} \right]$$
$$= \frac{10}{10} \left[1 + \sqrt{1 + \frac{2 \times 10 \times 40}{(10)^2}} \right]$$
$$= 4sec$$

- 716 (c)
 - (i) A body having constant speed can have varying velocity as direction may change.
 - (ii) Position-time graphs for two objects with zero relative velocity are parallel.
 - (iii) For a given time interval,

Therefore, all the options are true.

717 (d)

Distance is defined as length of the path between two points.

In this case

Disance = Area of
$$v - t$$
 graph in 4 s
= Area of trangle = $\frac{1}{2}$ base \times height
= $\frac{1}{2} \times 4 \times 8 = 16$ m

718 (b)

Acceleration,
$$a = \frac{dv}{dt}$$

As
$$a = constant$$

Then
$$\frac{dv}{dt} = \text{constant or } v = kt$$

Hence, the correct graph is (b).

719 (c)

From given figure, it is clear that the net displacement is zero. So average velocity will be zero

$$v = \sqrt{2gh} = \sqrt{2 \times 10 \times 20} = 20m/s$$

The area under acceleration time graph gives change in velocity. As acceleration is zero at the end of 11 sec

i.e.
$$v_{\text{max}}$$
 =Area of ΔOAB

$$=\frac{1}{2}\times11\times10=55\ m/s$$

722 (a)

The slope of distance-time graphs speed.

The change in velocity in 1 s

$$= \tan 60^{\circ} - \tan 45^{\circ} = \sqrt{3} - 1$$

$$\therefore Acceleration = \frac{\Delta v}{\Delta t} = \frac{\sqrt{3}-1}{1} = (\sqrt{3}-1) unit$$

723 (d)

Interval of ball throw = 2sec

If we want that minimum three (more than two) ball remain in air then time of flight of first ball must be greater than 4 sec

$$\frac{2u}{g} > 4 \sec \Rightarrow u > 19.6 \, m/s$$

For u = 19.6, first ball will just about to strike the ground (in air)

Second ball will be at highest point (in air) Third ball will be at point of projection or at ground (not in air)

724 (c)

Let the man starts crossing the road at an angle θ with the roadside. For safe crossing, the condition is that the man must cross the road by the time truck describes the distance $(4+2 \cot \theta)$,

So,
$$\frac{4+2\cot\theta}{8} = \frac{2l\sin\theta}{v}$$

or
$$v = \frac{8}{2\sin\theta = 2\cos\theta}$$

or
$$v = \frac{8}{2\sin\theta = 2\cos\theta}$$

For minimum $v = \frac{dv}{d\theta} = 0$

or
$$\frac{-8(2\cos\theta-\sin\theta)}{(2\sin\theta+\cos\theta)^2} = 0$$

or
$$2\cos\theta - \sin\theta = 0$$

or
$$\tan\theta = 2$$
, so, $\sin\theta = \frac{2}{\sqrt{5}}$, $\cos\theta = \frac{1}{\sqrt{5}}$

$$\therefore v_{\min} = \frac{6}{2\left(\frac{2}{\sqrt{5}}\right) + \frac{1}{\sqrt{5}}}$$

$$=\frac{8}{\sqrt{5}}=3.57$$
ms⁻¹

725 (c)

Let man will catch the bus after 't'sec. So he will cover distance ut

Similarly distance travelled by the bus will be $\frac{1}{2}at^2$

For the given condition

$$u t = 45 + \frac{1}{2}a t^2 = 45 + 1.25t^2$$
 [As $a = 2.5 m/s^2$]

$$\Rightarrow u = \frac{45}{t} + 1.25t$$

To find the minimum value of u

$$\frac{du}{dt} = 0$$
 sp we get $t = 6$ sec then,

$$u = \frac{45}{6} + 1.25 \times 6 = 7.5 + 7.5 = 15 \, \text{m/s}$$

726 **(b)**

From the give graph. From 0s to 8s, particle is accelerated, then from 8 to 12 s, particle moves with constant acceleration. The form 12 to 16s, the particle is in the condition of deceleration. Hence, maximum velocity will be during 8s to 12s. During 0 to 4s, the acceleration will be function of time. The equation of straight lines is

$$a = \frac{5}{4}t$$

$$\therefore \frac{dv}{dt} = \frac{5}{4}t$$

$$\therefore v = \int_{0}^{t} \frac{5}{4}t \, dt = \frac{5}{4}\frac{t^{2}}{2} = \frac{5}{8}t^{2}$$

The velocity at t = 4s is u = 10ms⁻¹

The distance travelled during 4 to 8s is

$$s_2 = ut + \frac{1}{2}at^2$$

= $10 \times 4 + \frac{1}{2} \times 5 \times 4^2$
= $40 + 40 = 80$ m

The velocity at t = 8s is

$$v = 10 + 5 \times 4 = 30 \text{ms}^{-1}$$

This is the maximum velocity.

Tricky approach: The area of a-t graph gives change in velocity. The area of the graph from 0 to 8s

$$= v - u = \frac{1}{2} \times 4 \times 5 + 4 \times 5 = 30$$

But u = 0

 $v = 30 \text{ms}^{-1}$

727 **(d)**

Average velocity =
$$\frac{Total\ Displacement}{Time\ taken} = \frac{25}{75/15} =$$

728 **(d)**

Let the body after time t/2 be at x from the top, then

$$x = \frac{1}{2}g\frac{t^2}{4} = \frac{gt^2}{8}$$
 ... (i)

$$h = \frac{1}{2}gt^2 \qquad \dots (ii)$$

Eliminate t from (i) and (ii), we get $x = \frac{h}{4}$

: Height of the body from the ground = $h - \frac{h}{4} = \frac{3h}{4}$

730 (b)

Let v be the velocity of the train after time t_1 .

Then
$$v = \alpha t_1 = \beta t_2; x_1 = \frac{1}{2} \alpha t_1^2$$

and
$$x_2 = \frac{1}{2} \beta t_2^2$$

$$\therefore \frac{\beta}{\alpha} = \frac{t_1}{t_2} \text{ and } \frac{x_1}{x_2} = \frac{\alpha t_1^2}{\beta t_2^2} = \frac{\alpha}{\beta} \times \frac{\beta^2}{\alpha^2} = \frac{\beta}{\alpha}$$

$$\therefore \frac{x_1}{x_2} = \frac{\beta}{\alpha} = \frac{t_1}{t_2}$$

731 **(b**)

Speed of stone in a vertically upward direction is $4.9 \ m/s$. So for vertical downward motion we will consider $u = -4.9 \ m/s$

$$h = ut + \frac{1}{2}gt^2 = -4.9 \times 2 + \frac{1}{2} \times 9.8 \times (2)^2$$
$$= 9.8 m$$

732 (d)

The separation between the two bodies, two seconds after the release of second body

$$= \frac{1}{2} \times 9.8[(3)^2 - (2)^2] = 24.5 m$$

734 (b)

(i)
$$\frac{\frac{1}{2} \times OA \times AC}{OA} + \frac{\frac{1}{2} \times AB \times AC}{AB} = 1$$

(ii)
$$\tan 60^\circ = \frac{CA}{OA}$$
 and $\tan 30^\circ = \frac{CA}{AB}$

 $OA \tan 60^{\circ} = AB \tan 30^{\circ}$

or
$$\frac{OA}{AB} = \frac{\tan 30^{\circ}}{\tan 60^{\circ}} = \frac{1}{\sqrt{3}} \times \frac{1}{\sqrt{3}} = \frac{1}{3}$$

735 **(b)**

Velocity of graph = Area of a-t graph = $(4 \times 1.5) - (2 \times 1) = 4m/s$

736 (b)

Given, $x = 2t^2 + 6t + 25$ and $y = t^2 + 2t + 1$

$$\therefore \frac{dx}{dt} = 4t + 6 \text{ and } \frac{dy}{dx} = 2 + 2$$

At t = 10 s

$$\frac{dx}{dt}$$
 = 4(10) + 6 = 46 and $\frac{dy}{dt}$ = 2 (10) + 2 = 22

$$v = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}$$

$$=\sqrt{(46)^2+(22)^2} \simeq 51$$
m/s

737 (a)

$$h = -4.9 \times 3 + \frac{1}{2} \times 9.8 \times 3 \times 3 = 5.9 \times 3 \times 2m =$$
29.4m

738 (a)

Total time of motion = t

Duration of acceleration = t'

Duration of deceleration = t - t'

Given u = 0, a = constant acceleration and

b = constant deceleration

v = 0 + at'

Also
$$0 = v - b(t - t')$$

$$v = at'$$

From (ii), -v = -bt + bt'

$$\Rightarrow -at' = -bt + bt'$$

$$\Rightarrow (a+b)t' = bt \Rightarrow t' = \frac{b}{(a+b)}t$$

But v = at'

∴ Maximum velocity attained = at'

$$\Rightarrow v = \frac{ab}{(a+b)} t \, m/s$$

739 (a)

Effective speed of bullet

= speed of bullet + speed of police jeep

$$= 180 m/s + 45 km/h = (180 + 12.5) m/s$$
$$= 192.5 m/s$$

Speed of thief's jeep = 153 km/h = 42.5 m/sVelocity of bullet w.r.t. thief's car = 192.5 -

 $42.5 = 150 \, m/s$

740 (b)

According to given relation acceleration $a = \alpha t +$

As
$$a = \frac{dv}{dt} \Rightarrow \alpha t + \beta = \frac{dv}{dt}$$

Since particle starts from rest, its initial velocity is

i.e., At time t = 0, velocity = 0

$$\Rightarrow \int_0^v dv = \int_0^t (\alpha t + \beta) dt \Rightarrow v = \frac{\alpha t^2}{2} + \beta t$$

741 (d)

$$u = 200 \text{ m/s}, v = 100 \text{ m/s}, s = 0.1 \text{ m}$$

$$a = \frac{u^2 - v^2}{2s} = \frac{(200)^2 - (100)^2}{2 \times 0.1} = 15 \times 10^4 \, m/s^2$$
 746 (c)

742 (c)

For first part,

$$u = 0, t = T$$
 and acceleration = a

$$v = 0 + aT = aT$$
 and $S_1 = 0 + \frac{1}{2}aT^2 = \frac{1}{2}aT^2$

For Second part,

u = aT, retardation = a_1 , v = 0 and time taken =

$$\therefore 0 = u - a_1 T_1 \Rightarrow aT = a_1 T_1$$

And from
$$v^2 = u^2 - 2aS_2 \Rightarrow S_2 = \frac{u^2}{2a_1} = \frac{1}{2} \frac{a^2T^2}{a_2}$$

$$S_2 = \frac{1}{2}aT \times T_1 \quad \left(\text{As } a_1 = \frac{aT}{T_1} \right)$$

$$\therefore v_{av} = \frac{S_1 + S_2}{T + T_4} = \frac{\frac{1}{2}aT^2 + \frac{1}{2}aT \times T_1}{T + T_4}$$

$$= \frac{\frac{1}{2}aT(T+T_1)}{T+T_1} = \frac{1}{2}aT$$

743 (a)

Velocity $v = \alpha \sqrt{x}$

$$\frac{dx}{dt} = \alpha \sqrt{x} \qquad \left(\because v = \frac{dx}{dt}\right)$$

Or
$$\frac{dx}{\sqrt{x}} = \alpha dt$$

Integrating

$$\int_0^x \frac{dx}{\sqrt{x}} = \int_0^t \alpha \, dt$$

 $[\because at t = 0, x]$

= 0 ad let at any time t, particle is at x]

Or
$$\frac{x^{1/2}}{1/2} = \alpha t$$

Or
$$x^{1/2} = \frac{\alpha}{2}t$$

Or
$$x = \frac{\alpha^2}{4} \times t^2 \Rightarrow x \propto t^2$$

744 (c)

From acceleration time graph, acceleration is constant for first part of motion so, for this part velocity of body increases uniformly with time and as a = 0 then the velocity becomes constant. Then again increased because of acceleration

745 (a)

$$0^2 - v^2 = -2aS$$
 or $v^2 \propto S$; $\left(v + \frac{20v}{100}\right)^2 \propto S'$

or
$$\frac{S'}{S} = \left(1 + \frac{20}{100}\right)^2 = \frac{36}{25}$$

$$\therefore \left(\frac{s'}{s} - 1\right) \times 100 = \left(\frac{36}{25} - 1\right) \times 100 = 44\%$$

$$v = (180 - 16x)^{1/2}$$

As
$$a = \frac{dv}{dt} = \frac{dv}{dx} \cdot \frac{dx}{dt}$$

$$\therefore a = \frac{1}{2} (180 - 16x)^{-1/2} \times (-16) \left(\frac{dx}{dt}\right)$$

$$= -8(180 - 16x)^{-1/2} \times v$$

$$= -8(180 - 16x)^{-1/2} \times (180 - 16x)^{1/2}$$

$$= -8 \, m/s^2$$

747 (b)

Area under the velocity–time curve over a given time interval gives the displacement of the particle

$$\frac{dt}{dx} = 2\alpha x + \beta \Rightarrow v = \frac{1}{2\alpha x + \beta}$$

$$\therefore a = \frac{dv}{dt} = \frac{dv}{dx} \cdot \frac{dx}{dt}$$

$$a = v \frac{dv}{dx} = \frac{-v \cdot 2\alpha}{(2\alpha x + \beta)^2} = -2\alpha \cdot v \cdot v^2 = -2\alpha v^3$$

$$\therefore \text{ Retardation} = 2\alpha v^3$$

749 (d)

Let t_{AB} , t_{BC} , t_{CD} and t_{DA} be the time taken by the aeroplane to go from A to B, B to C, C to D and D to A respectively

Average speed= $\frac{\text{Total distance covered}}{\text{Total time taken}}$ $= \frac{1000km + 1000km + 1000km + 1000km}{t_{AB} + t_{BC} + t_{CD} + t_{DA}}$ $= 190.5 \text{ km h}^{-1}$

750 (b)

When a ball is dropped on a floor then

$$y = \frac{1}{2} gt^2 \qquad \dots (i)$$

So, the graph between y and t is a parabola. Here y decrease as time decrease. When the ball is bounces back then

$$y = ut - \frac{1}{2}gt^2$$
 ... (ii)

Eq. (ii) is also the form of a general equation of parabola so the graph between y and t will be a parabola. Here y increases when the time increases. Hence, the required graph between y and t is shown in the figure.

751 **(b)**

The distance travelled in t sec in upward motion is

$$s = u - \frac{1}{2} \operatorname{g}(2\mathsf{t} - 1)$$

$$\therefore AB = u - \frac{1}{2}g(2 \times 5 - 1)$$

$$AB = u - \frac{1}{2} 9g$$

Distance travelled in 1 s in the downward direction is

$$BA = 0 + \frac{1}{2} g(1)^2$$

It is given that these distance are equal. Therefore,

$$u - \frac{9g}{2} = \frac{1}{2}g$$

 $u = 5 \times 9.8 = 49 \text{ ms}^{-1}$

752 (d)

Let the car accelerate at rate α for time t_1 then maximum velocity attained,

$$v = 0 + at_1 = at_1$$

Now, the car decelerates at a rate β for time (t – t_1) and finally comes to rest. Then,

$$\begin{split} 0 &= v - \beta(t - t_1) \Rightarrow 0 = \alpha t_1 - \beta t + \beta t_1 \\ &\Rightarrow t_1 = \frac{\beta}{\alpha + \beta} t \\ &\therefore v = \frac{\alpha \beta}{\alpha + \beta} t \end{split}$$

753 (d)

Up to time t_1 slope of the graph is constant and after t_1 slope is zero i.e. the body travel with constant speed up to time t_1 and then stops

754 (a)
$$\frac{dv}{dt} = bt \text{ or } dv = bt dt$$

$$\int_{v_0}^{v} dv = \int_0^t bt dt \text{ or } v - v_0 = \frac{bt^2}{2}$$
or $v = v_0 = +\frac{bt^2}{2}$
or $dx = v_0 dt + \frac{bt^2}{2} dt$

$$\int_0^x dx = \int_0^t v_0 dt + \frac{b}{2} \int_0^t t^2 dt$$
or $x = v_0 t + \frac{1}{2} \frac{bt^3}{3} = v_0 t + \frac{bt^3}{6}$

755 (d)

Let S be the distance between AB and α be constant acceleration of a particle. Then

$$v^{2} - u^{2} = 2aS$$

Or $aS = \frac{v^{2} - u^{2}}{2}$... (i

Let v_c be velocity of a particle at midpoint C

$$v_c^2 - u^2 = 2a \left(\frac{S}{2}\right)$$

$$v_c^2 = u^2 + aS = u^2 + \frac{v^2 - u^2}{2} \quad \text{[Using (i)]}$$

$$v_c = \sqrt{\frac{u^2 + v^2}{2}}$$

756 (c)

Displacement of the particle will be zero because it comes back to its starting point

Average speed =
$$\frac{\text{Total distance}}{\text{Total time}} = \frac{30m}{10sec}$$

= 3 m/s

757 **(a)**

$$v = u - gt$$
At max height
$$v^{2} = u^{2} - 2gh$$

$$t = \frac{u}{g} \quad h = \frac{u^{2}}{2g}$$

$$\frac{t_{1}}{t_{2}} = \frac{2}{3} \quad \frac{h_{1}}{h_{2}} = \left(\frac{2}{3}\right)^{2} = \frac{4}{9}$$

$$S_2 = \frac{1}{2}gt_2^2 = \frac{10}{2} \times (3)^2 = 45 m$$

$$S_1 = \frac{1}{2}gt_1^2 = \frac{10}{2} \times (5)^2 = 125 m$$

$$\therefore S_1 - S_2 = 125 - 45 = 80 m$$

The displacement equation is given by

$$x = a_0 + \frac{a_1 t}{2} - \frac{a_2 t^2}{3}$$

Velocity = rate of change of displacement

ie,
$$v = \frac{dx}{dt}$$

$$= \frac{d}{dt} \left(a_0 + \frac{a_1 t}{2} - \frac{a_2 t^2}{3} \right)$$

$$= 0 + \frac{a_1}{2} - \frac{2a_2 t}{3}$$

$$= \frac{a_1}{2} - \frac{2a_2 t}{3}$$

Acceleration = rate of change of velocity

ie,
$$a = \frac{dv}{dt}$$
$$= \frac{d}{dt} \left(\frac{a_1}{2} - \frac{2a_2}{3} t \right)$$
$$= 0 - \frac{2a_2}{3}$$
$$= -\frac{2a_2}{3}$$

760 (a)

$$s = 1.2 m$$

 $v = 640 ms^{-1}$
 $a = ?; u = 0; t = ?$
 $2 as = v^2 - u^2$

$$\Rightarrow 2a \times 1.2 = 640 \times 640 \Rightarrow a = \frac{8 \times 64 \times 10^3}{3}$$

$$v = u + at \Rightarrow t = \frac{v}{a} = \frac{15}{4} \times 10^{-3} = 3.75 \times 10^{-3} s$$

$$\approx 4 ms$$

761 **(d)**

$$h = \frac{1}{2}gt^2 \implies t = \sqrt{\frac{2 \times 1960}{9.8}} = 20 \text{ s}$$

$$S = AB = ut = 600 \times \frac{20}{60 \times 60}$$
$$= 3.33 \text{ km}$$

762 (d)

The area under acceleration-time graph gives change in velocity.

764 (b)

The diagram is showing the position of car and truck at various instants.

$$v \times 20 + \frac{1}{2} \times 3 \times 10^{2} = \frac{3v}{2} \times 20$$

$$\frac{3}{2} \times 100 = \frac{v}{2} \times 20$$

$$v = 15 \text{ ms}^{-1}$$

765 (b)

Distance average speed =
$$\frac{2v_1v_2}{v_1+v_2} = \frac{2\times 2.5\times 4}{2.5+4}$$

= $\frac{200}{65} = \frac{40}{13} km/hr$

766 (d)

O is the observation point at the ground. *A* and *B* are the positions of aircraft for which $\angle AOB = 30^{\circ}$. Time taken by aircraft from *A* to *B* is 10s $\triangle AOB$

$$\tan 30^{\circ} = \frac{AB}{3400}$$

$$AB = 3400 \tan 30^{\circ} = \frac{3400}{\sqrt{3}}m$$

: Speed of aircraft,

$$v = \frac{AB}{10} = \frac{3400}{10\sqrt{3}} = 196.3 \text{ ms}^{-1}$$

767 (a)

Distance = Area covered between velocity and time axis

$$=\frac{1}{2}(30+10)10=200 meter$$

768 (a)

If a body starts from rest with acceleration α and then retards with retardation β and comes to rest. The total time taken for this journey is t and distance covered is S

Then
$$S = \frac{1}{2} \frac{\alpha \beta t^2}{(\alpha + \beta)} = \frac{1}{2} \frac{5 \times 10}{(5 + 10)} \times t^2$$

 $\Rightarrow 1500 = \frac{1}{2} \frac{5 \times 10}{(5 + 10)} \times t^2 \Rightarrow t = 30 \text{ sec}$

769 (a)

According to problem

Distance travelled by body A in 5^{th} sec and distance travelled by body B in 3^{rd} sec. of its motion are equal.

$$0 + \frac{a_1}{2}(2 \times 5 - 1) = 0 + \frac{a_2}{2}[2 \times 3 - 1]$$
$$9a_1 = 5a_2 \Rightarrow \frac{a_1}{a_2} = \frac{5}{9}$$

770 **(b)** $v = v_0 + gt + ft^2$

Or
$$\frac{dx}{dt} = v_0 + gt + ft^2$$

Or
$$dx = (v_0 + gt + ft^2) dt$$

So,
$$\int_0^x dx = \int_0^1 (v_0 + gt + ft^2) dt$$

Or
$$x = v_0 + \frac{g}{2} + \frac{f}{3}$$

771 (d)

Let t_{AB} , t_{BC} , t_{CD} and t_{DA} be the time taken by the aeroplane to go from A to B, B to C, C to D and D to A respectively

$$\therefore t_{DA} = \frac{1000 \, km}{100 \, km \, h^{-1}} = 10h$$

Average speed= $\frac{\text{Total distance covered}}{\text{Total time taken}}$ $= \frac{1000km + 1000km + 1000km + 1000km}{t_{AB} + t_{BC} + t_{CD} + t_{DA}}$

 $= 190.5 \, km \, h^{-1}$

772 (b)

For stone to be dropped from rising balloon of velocity 29 m/s

$$u = -29 \, m/s, t = 10 sec$$

$$\therefore h = -29 \times 10 + \frac{1}{2} \times 9.8 \times 100$$

$$= -290 + 490 = 200 m$$

773 (d)

Using, v = u + at or v - u = at, we find that if $|\vec{a}|$ is, it t is the time for acceleration, then $\frac{t}{2}$ is the time for retardation

Now,
$$t + \frac{t}{2} = 3$$
 or $\frac{3t}{2} = 3$ or $t = 2s$
 $S = \frac{1}{2} \times 2 \times 2 \times 2 + \frac{1}{2} \times 4 \times 1 \times 1 = (4 + 2)m = 6m$

774 (c)

$$h = ut + \frac{1}{2}gt^2 \Rightarrow 1 = 0 \times t_1 + \frac{1}{2}gt_1^2 \Rightarrow t_1$$
$$= \sqrt{2/g}$$

Velocity after travelling 1 m distance

$$v^2 = u^2 + 2gh \Rightarrow v^2 = (0)^2 + 2g \times 1 \Rightarrow v = \sqrt{2g}$$

For second 1 m distance

$$1 = \sqrt{2g} \times t_2 + \frac{1}{2}gt_2^2 \Rightarrow gt_2^2 + 2\sqrt{2g}t_2 - 2 = 0$$
$$t_2 = \frac{-2\sqrt{2g} \pm \sqrt{8g + 8g}}{2g} = \frac{-\sqrt{2} \pm 2}{\sqrt{g}}$$

Taking +ve sign $t_2 = (2 - \sqrt{2})/\sqrt{g}$

$$\therefore \frac{t_1}{t_2} = \frac{\sqrt{2/g}}{(2-\sqrt{2})/\sqrt{g}} = \frac{1}{\sqrt{2}-1}$$
 and so on

775 (a

Average speed for other half of distance

$$=\frac{4.5+7.5}{2}\,\mathrm{ms^{-1}}=6\mathrm{ms^{-1}}$$

Average speed during whole motion

$$= \frac{2 \times 3 \times 6}{3 + 6} \text{ms}^{-1} = 4 \text{ms}^{-1}$$

776 (c)

Given: Initial velocity of a body u = 0 ... (i) Let s be the distance covered by a body in time t $\therefore s = ut + \frac{1}{2} at^2$ or $s = \frac{1}{2} at^2$ [Using (i)]

777 (b)

Let two boys meet at point C after time t from the starting. Then,

$$AC = vt, BC = v_1t$$
$$(AC)^2 = (AB)^2 + (BC)^2$$

$$\Rightarrow v^2t^2 = a^2 + v_1^2t^2$$

By showing, we get
$$t = \sqrt{\frac{a^2}{v^2 - v_1^2}}$$

778 (c)

Speed of the object at reaching the ground $v = \sqrt{2gh}$

If heights are equal then velocity will also be equal

780 (c)

Since, v = (t - 2), so $v \propto t$. On plotting a graph between v and t we get a straight line AB and BC as shown in figure. The distance covered in 4s is equal to the area under the velocity-time graph = Area of $\Delta OAB \mp A$ rea of ΔBCD

$$= \frac{2 \times 2}{2} + \frac{2 \times 2}{2} = 2 + 2 = 4m$$

781 (b)

According to problem, when

$$s = a, t = p$$

$$varrange s = ut + \frac{1}{2}ft^2$$
 (here, f =acceleration)

$$\therefore a = up + \frac{fp^2}{2}$$
 (i)

For
$$s = b, t = q$$

$$b = uq + \frac{fq^2}{2}$$
 (ii)

After solving Eqs. (i) and (ii),

$$f = \frac{2(aq - bp)}{pq(p - q)}$$

782 **(d**)

$$u = at, x = \int u dt = \int at dt = \frac{at^2}{2}$$

For
$$t = 4 \sec_{x} x = 8a$$

$$s = 3t^{3} + 7t^{2} + 14t + 8m$$

$$a = \frac{d^{2}s}{dt^{2}} = 18t + 14 \text{ at } t = 1 \text{ sec } \Rightarrow a = 32 \text{ m/s}^{2}$$

$$s = ut + \frac{1}{2}at^2$$
$$s = \frac{1}{2}at^2$$

$$[\because u = 0]$$

It is an equation of parabola

785 (c)

Relativistic momentum = $\frac{m_0 v}{\sqrt{1 - v^2/c^2}}$

If velocity is doubled then the relativistic mass also increases. Thus value of linear momentum will be more than double

786 (a)

Here,
$$u = 10 \text{ ms}^{-1}$$
, $t = 2s$, $S = 20 \text{ m}$

Using
$$S = ut + \frac{1}{2}at^2$$

$$\therefore 20 = 10 \times 2 + \frac{1}{2} \times a \times 2^2$$

$$0 = 2a \Rightarrow a = 0$$

787 (b)

$$u = 0, v = 180 \, km \, h^{-1} = 50 \, ms^{-1}$$

Time taken t = 10s

$$a = \frac{v - u}{t} = \frac{50}{10} = 5 \ ms^{-2}$$

 \therefore Distance covered $S = ut + \frac{1}{2}at^2$

$$= 0 + \frac{1}{2} \times 5 \times (10)^2 = \frac{500}{2} = 250 m$$

788 (d)

Time of flight
$$T = \frac{2u}{a} 4 \sec \Rightarrow u = 20 \text{ m/s}$$

The nature of the path is decided by the direction of velocity, and the direction of acceleration. The trajectory can be a straight line, circle or a parabola depending on these factors

791 (a)

$$4 = u + \frac{a}{2}(2 \times 3 - 1)$$
 or $4 = u + \frac{5a}{2}$,

$$5 = u + \frac{a}{2}(2 \times 4 - 1)$$
 or $5 = u + \frac{7a}{2}$

Subtracting, $1 = \frac{7a}{2} - \frac{5a}{2} = \frac{2a}{2} = a$

Again,
$$4 = u + \frac{5}{2}$$
 or $u = 4 - \frac{5}{2} = 1.5 \text{ms}^{-1}$

So, the initial velocity is non-zero and acceleration is uniform.

792 (b)

$$v = u + \int adt = u + \int (3t^2 + 2t + 2)dt$$

$$= u + \frac{3t^3}{3} + \frac{2t^2}{2} + 2t = u + t^3 + t^2 + 2t$$

$$= 2 + 8 + 4 + 4 = 18 \text{ m/s} \quad (As t = 2 \text{ sec})$$

793 (c)

Total distance to be covered for crossing the

= length of train + length of bridge

$$= 150m + 850m = 1000m$$

Time =
$$\frac{\text{Distance}}{\text{Velocity}} = \frac{1000}{45 \times \frac{5}{18}} = 80 \text{ sec}$$

794 (b)

$$\frac{(S)_{(last\ 2S)}}{(S)_{7S}} = \frac{\frac{1}{2} \times 2 \times 10}{\frac{1}{2} \times 2 \times 10 + 2 \times 10 + \frac{1}{2} \times 2 \times 10}$$

$$=\frac{1}{4}$$

795 (b)

$$v = u + at \Rightarrow -2 = 10 + a \times 4 \Rightarrow a$$
$$= -3m/\sec^{2}$$

796 (a)

Distance covered in 5 s

$$s_1 = \frac{1}{2} at^2$$

$$=\frac{1}{2}a(5)^2=\frac{25a}{2}$$

Distance covered in 5th second

$$s_2 = \frac{1}{2} \times a(2 \times 5 - 1) = \frac{9}{2} a$$

$$\therefore \frac{s_2}{s_1} = \frac{9}{25}$$

798 **(b)**

Constant velocity means constant speed as well as same direction throughout

799 (d)

Average speed =
$$\frac{\text{Total distance travelled}}{\text{Total time taken}}$$

= $\frac{x}{\frac{2x/5}{v_1} + \frac{3x/5}{v_2}} = \frac{5v_1v_2}{3v_1 + 2v_2}$

800 (d)

Relative velocity of police man w.r.t. the time10 - $9 = 1 \text{ms}^{-1}$. Since the relative separation between them is 100 m, hence, the time taken will be = relative separation/relative velocity =100/1=100s

801 (b)

Area under the velocity-time curve over a given time interval gives the displacement of the particle

802 (b)

Constant velocity means constant speed as well as same direction throughout

803 (c)

Let car starts from point A from rest moves up to point B with acceleration f

Velocity of car at point *B*,
$$v = \sqrt{2fS}$$

$$[As v^2 = u^2 + 2as]$$

Car moves distance BC with this constant velocity in time t

$$x = \sqrt{2fS} \cdot t$$
 [As $s = ut$] ... (i)

So the velocity of car at point C also will be $\sqrt{2fS}$ and finally car stops after covering distance y

Distance
$$CD \Rightarrow y = \frac{(\sqrt{2fS})^2}{2(f/2)} = \frac{2fS}{f} = 2S$$
 ...(ii)

So, the total distance AD = AB + BC + CD = 15S[Given]

$$\Rightarrow S + x + 2S = 15 S \Rightarrow x = 12S$$

Substituting the value of x in equation (i) we get $x = \sqrt{2fS}.t \Rightarrow 12S = \sqrt{2fS}.t \Rightarrow 144S^2 = 2fS.t^2$ 809 (c) $\Rightarrow S = \frac{1}{72} ft^2$

804 (a)

According to kinematics equation,

$$v = v_0 - g t$$

Upward direction is taken a positive and downward direction is taken as negative. Hence, v - t graphs is straight line having negative slope.

805 (c)

Since acceleration due to gravity is independent of mass, hence time is also independent of mass (or density) of object

806 (c)

Given,
$$t = ax^2 + bx$$

Differentiating w.r.t. t

$$\frac{dx}{dt} = 2 ax \frac{dx}{dt} + b \frac{dx}{dt}$$

$$v = \frac{dx}{dt} = \frac{1}{(2ax + b)}$$

Again differentiating w.r.t. t

$$\frac{d^2x}{dt^2} = \frac{-2a}{(2ax+b)^2} \frac{dx}{dt}$$

$$\therefore f = \frac{d^2x}{dt^2} = \frac{-1}{(2ax+b)^2} \cdot \frac{2a}{(2ax+b)}$$

Or
$$f = \frac{-2a}{(2ax+b)^3}$$

$$\therefore f = -2av^3$$

807 (a)

$$v'' = \sqrt{\frac{v'' - \frac{x}{2}}{\frac{x}{2}}} = \sqrt{\frac{900 + 400}{2}} = \sqrt{650}$$

When two particles moves towards each other

$$v_1 - v_2 = 6$$
 ...(i

When these particles moves in the same direction

$$v_1 - v_2 = 4$$
 ...(ii)

By solving
$$v_1 = 5$$
 and $v_2 = 1$ m/s

Acceleration of the body along AB is $g \cos \theta$ Distance travelled in time t sec = AB = $\frac{1}{2}(g\cos\theta)t^2$

From $\triangle ABC$, $AB = 2R \cos \theta$; $2R \cos \theta =$ $\frac{1}{2}g\cos\theta t^2$

$$\Rightarrow t^2 = \frac{4R}{g} \text{ or } t = 2\sqrt{\frac{R}{g}}$$

810 (a)

$$v = 3t^2 = 12t + 3$$
; $a = 6t - 12$
When $a = 0.6t - 12 = 0$
or $6t = 12$ or $t = 2$ s When $t = 2$ s,
 $v = 3 \times 2 \times 2 - 12 \times 2 + 3 = -9$ ms⁻¹

811 (c)

We know that gravity is a universal force with which all bodies are attracted towards the earth. Hence, g is same for both the balls. Also, if t is the time taken by the balls to reach the ground, then from equation of motion.

$$s = ut + \frac{1}{2}gt^2$$

$$\Rightarrow \qquad t = \sqrt{\frac{2(s - ut)}{g}}$$

Since s, u and g are same for both, hence time taken by both the balls is same.

812 (d)

If t_1 and t_2 are time of ascent and descent respectively then time of flight $T=t_1+t_2=\frac{2u}{g}$

$$\Rightarrow u = \frac{g(t_1 + t_2)}{2}$$

813 (b)

Let 'a' be the retardation of boggy then distance covered by it be S. If u is the initial velocity of boggy after detaching from train (i. e. uniform speed of train)

$$v^2 = u^2 + 2as \Rightarrow 0 = u^2 - 2as \Rightarrow s_b = \frac{u^2}{2a}$$

Time taken by boggy to stop

$$v = u + at \Rightarrow 0 = u - at \Rightarrow t = \frac{u}{a}$$

In this time t distance travelled by train $= s_t = ut = \frac{u^2}{u^2}$

Hence ratio
$$\frac{s_b}{s_1} = \frac{1}{2}$$

814 (b)

$$x = 4(t-2) + a(t-2)^{2}$$

At
$$t = 0$$
, $x = -8 + 4a = 4a - 8$

$$v = \frac{dx}{dt} = 4 + 2a(t-2)$$

At
$$t = 0$$
, $v = 4 - 4a = 4(1 - a)$

But acceleration,
$$a = \frac{d^2x}{dt^2} = 2a$$

815 (c)

For upward motion

Effective acceleration = -(g + a)

And for downward motion

Effective acceleration = (g - a)

But both are constants. So the slope of speed-time graph will be constant

816 (a)

Total time of motion = t

Duration of acceleration = t'

Duration of deceleration = t - t'

Given u = 0, a = constant acceleration and

b = constant deceleration

$$v = 0 + at'$$

Also
$$0 = v - b(t - t')$$

$$:: v = at'$$

From (ii),
$$-v = -bt + bt'$$

$$\Rightarrow -at' = -bt + bt'$$

$$\Rightarrow (a+b)t' = bt \Rightarrow t' = \frac{b}{(a+b)}t$$

But
$$v = at'$$

 \therefore Maximum velocity attained = at'

$$\Rightarrow v = \frac{ab}{(a+b)} t \, m/s$$

817 (d)

The average speed

$$v_{\text{av}} = \frac{\text{length of path } ACB}{\text{time interval } (t_2 - t_1)}$$
 ... (i)

And average velocity,

$$\mathbf{v}_{av} = \frac{\text{displacement}}{\text{time interval}} = \frac{\mathbf{r}_2 - \mathbf{r}_1}{t_2 - t_1} \dots \text{(ii)}$$

But we know that distance is always be greater than or equal to magnitude of displacement. So the average speed will always be greater than or equal to the magnitude of average velocity.

From Eqs. (i) and (ii)

$$\frac{\mathbf{v}_{av}}{v_{av}} = \frac{\text{displacement}}{\text{length of path (distance)}} \le 1$$

818 (d)

Let the thickness of each plank is *d*.

From equation of motion

$$v^2 = u^2 + 2as$$
 ... (i)

Ist case

$$s = 2d$$
, $u = 100 \text{ ms}^{-1}$, $v = 0$

$$0 = (100)^2 + 2a \times 2d$$

Or
$$4ad = -100 \times 100$$

Or
$$a = -\frac{100 \times 100}{4d}$$

$$\therefore \qquad a = -\frac{2500}{d} \qquad \dots \text{(ii)}$$

IInd case Let the bullet with double the previous speed will penetrate n planks of equal thickness d.

Now,
$$v = 0$$
, $u = 200 \text{ ms}^{-1}$, $a = -\frac{2500}{d}$, $s = nd$

$$0 = (200)^2 - 2 \times \frac{2500}{d} \times nd$$

Or
$$n = \frac{200 \times 200}{2 \times 2500} = 8$$

819 (b)

Velocity at 3s = total algebraic sum of area under the curve

$$v = 4 \times 2 - 4 \times 1 = 4 \text{ m/s}$$

820 (b)

Let car B catches, car A after 't'sec, then

$$60t + 2.5 = 70t - \frac{1}{2} \times 20 \times t^{2}$$

$$\Rightarrow 10t^{2} - 10t + 2.5 = 0 \Rightarrow t^{2} - t + 0.25 = 0$$

$$\therefore t = \frac{\sqrt{1-4\times(0.25)}}{2} = \frac{1}{2}hr$$

Let v be the speed of boatman is still water.

Resultant of v and u should be along AB. Components of \vec{v}_b (absolute velocity of boatman) along x and y direction are,

$$v_x = u - v \sin\theta$$

Further,
$$\tan 45^\circ = \frac{v_y}{v_x}$$

or
$$1 = \frac{v \cos \theta}{u - v \sin \theta}$$
$$v = \frac{u}{\sin \theta + \cos \theta} = \frac{u}{\sqrt{2} \sin(\theta + 45^\circ)}$$

v is minimum at,

$$\theta + 45^{\circ} = 90^{\circ} \text{ or } \theta = 45^{\circ}$$

and
$$v_{\min} = \frac{u}{\sqrt{2}}$$

At D then the distance CD is least. Therefore, OC = (10 - 3t)m

$$\therefore CD^2 = 0C^2 + 0D^2$$
$$= (10 - 3t)^2 + (4t)^2$$

$$= (10 - 3t)^2 + (4t)^2$$

$$= 25t^2 - 60t + 100$$

or $CD = [(5t - 6)^2 + 64]^{1/2}$

CD is least if
$$(5t-6)^2 = 0$$
 or $5t-6=0$

or
$$5t = 6$$
 or $6 = t/5 = 1.2$ s

So,
$$AC = 3 \times 1.2 = 3.6$$
m: $CD = (64)^{1/2} = 8$ m.

823 (a)

$$s = 1.2 m$$

$$v = 640 \ ms^{-1}$$

$$a = ?; u = 0; t = ?$$

$$2 as = v^2 - u^2$$

$$\Rightarrow 2a \times 1.2 = 640 \times 640 \Rightarrow a = \frac{8 \times 64 \times 10^3}{3}$$

$$v = u + at \implies t = \frac{v}{a} = \frac{15}{4} \times 10^{-3} = 3.75 \times 10^{-3} \text{ s}$$

824 (b)

Time of ascent =
$$\frac{u}{g}$$
 = 6 sec $\Rightarrow u = 60m/s$

Distance in first second $h_{\text{first}} = 60 - \frac{g}{2}(2 \times 1 -$

$$1) = 55m$$

Distance in seventh second will be equal to the distance in first second of vertical downward

$$h_{\text{seventh}} = \frac{g}{2}(2 \times 1 - 1) = 5 \text{ } m \Rightarrow h_{\text{first}}/h_{\text{seventh}}$$

= 11:1

825 (d)

The velocity-time graph for the given situation can be drawn as below. Magnitudes of slope of

And slope of $BC = \frac{f}{2}$

$$v = f t_1 = \frac{f}{2} t_2$$

$$t_2 = 2t_1$$

In graph area of $\triangle OAD$ gives

Distance,
$$S = \frac{1}{2} f t_1^2$$
 (i)

Area of rectangle ABED gives distance travelled in time t.

$$S_2 = (f \ t_1)t$$

Distance travelled in time $t_2 =$

$$S_3 = \frac{1}{2} \frac{f}{2} (2t_1)^2$$

Thus, $S_1 + S_2 + S_3 = 15 S$

$$S + (ft_1)t + ft_1^2 = 15 S$$

$$S + (ft_1)t + 2S = 15 S$$
 $\left(S = \frac{1}{2} ft_1^2\right)$

$$(ft_1)t = 12 S$$
 ... (ii)

From Eqs. (i) and (ii), we have

$$\frac{12 S}{S} = \frac{(ft_1)t}{\frac{1}{2}(ft_1)t_1}$$

$$\therefore t_1 = \frac{t}{6}$$

From Eq. (i), we get

$$\therefore S = \frac{1}{2} f(t_1)^2$$

$$\therefore S = \frac{1}{2} f \left(\frac{t}{6}\right)^2 = \frac{1}{72} f t^2$$

826 (d)

The straight vertical line in the graph represents change in the direction of velocity.

827 **(b)**

Given,
$$a = \frac{dv}{dt} = 6t + 5$$

Integrating it $\int_0^v dv = \int_0^t (6t + 5)dt$

$$v = \frac{6t^2}{2} + 5t$$

As
$$v = \frac{ds}{dt}$$
, so $ds = \left(\frac{6t^2}{2} + 5t\right)dt$

$$s = 3\frac{t^3}{3} + \frac{5t^2}{2}$$

Where t = 2s, $s = 3 \times \frac{2^3}{3} + \frac{5 \times 2^2}{2} = 18$ m

828 (b)

$$2 = \sqrt{\frac{2 \times 19.6}{g}}$$
 or $g = \frac{2 \times 19.6}{4} = 9.8 \text{ms}^{-2}$

829 (d)

Man walks from his home to market with a speed of 5 km/h. Distance= 2.5 km and time = $\frac{d}{v} = \frac{2.5}{5}$ =

 $\frac{1}{2}$ hr and he returns back with speed of 7.5 km/h

in rest of time of 10 minutes

Distance =
$$7.5 \times \frac{10}{60} = 1.25 \text{ km}$$

So, Average speed =
$$\frac{\text{Total distance}}{\text{TOtal time}}$$

$$=\frac{(2.5+1.25)km}{(40/60)hr} = \frac{45}{8}km/hr$$

830 (a)

When the body is projected vertically upward then at the highest point its velocity is zero but acceleration is not equal to zero $(g = 9.8 \text{m/s}^2)$

831 (d)

By the time 5th water drop starts falling, the first water drop reaches the ground.

As
$$u = 0$$
, $h = \frac{1}{2}gt^2 = \frac{1}{2} \times 10 \times t^2$

or
$$5 = \frac{1}{2} \times 10 \times t^2$$
 or $t = 1$ s

Hence, the interval of each water drop = $\frac{1s}{4}$ = 0.25s.

When the 5th drop starts its journey towards ground, the third drop travels in air for

$$t_1 = 0.25 + 0.25 = 0.5$$
s

∴ Height (distance) covered by 3rd drop in air is

$$h_1 = \frac{1}{2}gt_1^2 = \frac{1}{2} \times 10 \times (0.5)^2$$

$$= 5 \times 0.25 = 1.25$$
m

So, third water drop will be at a height of

$$= 5 - 1.25 = 3.75$$
m

832 (a)

$$1900 = \frac{1}{2} \times 0.4[(120)^2 - (120 - t^2)]$$
or $\frac{1900}{0.2} = (240 - t)t$ or $9500 = 240t - t^2$

or
$$t^2 - 240t + 9500 = 0$$

or
$$t^2 - 190t - 50t + 9500 = 0$$

or
$$t(t-190) - 50(t-190) = 0$$

or
$$(t-50)(t-190) = 0 \Rightarrow t = 50$$
s,190s

Rejecting t = 190 s, we get t = 50 s

833 **(b)**

Let the stone remains in air for t s. From $S=ut+\frac{1}{2}gt^2$

Here,
$$u = 0$$
, $S = \frac{1}{2}gt^2$

Total distance travelled by the stone in last second is

$$D = S_t - S_{t-1} = \frac{1}{2}gt^2 - \frac{1}{2}g(t-1)^2$$

Distance travelled by the stone in first three seconds is

$$S_3 = \frac{1}{2} \times g \times 3^2 = \frac{9}{2}g$$

According to given problem, $D = S_3$

$$\therefore \frac{g}{2}(2t-1) = \frac{9}{2}g \text{ or } 2t-1 = 9 \implies t = 5s$$

834 (b)

Time taken by first drop to reach the ground t =

$$\sqrt{\frac{2h}{g}} \Rightarrow t = \sqrt{\frac{2 \times 5}{10}} = 1 \sec$$

As the water drops fall at regular intervals from a tap therefore time difference between any two drops = $\frac{1}{2}$ sec

In this given time, distance of second drop from

the tap =
$$\frac{1}{2}g\left(\frac{1}{2}\right)^2 = \frac{10}{8} = 1.25 \ m$$

Its distance from the ground = 5 - 1.25 = 3.75m

835 (c)

$$v = \sqrt{2gh} = \sqrt{2 \times 10 \times 20} = 20m/s$$

Given : Initial velocity of a body u = 0Let s be the distance covered by a body in time t $\therefore s = ut + \frac{1}{2} at^2 \text{ or } s = \frac{1}{2} at^2$ [Using (i)] $\Rightarrow s \propto t^2$

837 (a)

As the clear from figure

$$4t = 6 + \frac{1}{2} \times 1.2 \times t^2$$

or
$$4t = 6 + 0.6t^2$$

838 (b)

$$v = u + at$$
 As $u = 0$, $v = at$

The graph (b) is correct as v = 0 at t = 0, and in the straight line graph y = mx, y = v, m = a and

839 (c)

Since, the object accelerates from rest, its initial velocity u is zero. ie, u = 0

From first equation of motion

$$v = u + at$$

$$\therefore 27.5 = 0 + a \times 10$$

Or
$$a = 2.75 \text{ ms}^{-2}$$

Hence, distance covered in first 10 s

$$s_1 = ut + \frac{1}{2}at^2$$

= $0 + \frac{1}{2} \times 2.75 \times (10)^2 = 137.5 \text{ m}$

Distance covered in next 10 s with uniform velocity of 27.5 ms⁻¹

$$s_2 = 27.5 \times 10 = 275 \text{ m}$$

Total distance covered

$$s = 137.5 + 275 = 412.5 \text{ m}$$

840 (b)

Distance covered = Area enclosed by v - t graph = Area of triangle = $\frac{1}{2} \times 4 \times 8 = 16 m$

MOTION IN A STRAIGHT LINE

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 1 to 0. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

- a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
- b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
- c) Statement 1 is True, Statement 2 is False
- d) Statement 1 is False, Statement 2 is True

1

- Statement 1: The speedometer of an automobile measure the average speed of the automobile
- **Statement 2:** Average velocity is equal to total displacement per total time taken

2

- **Statement 1:** Rocket in flight is not an illustration of projectile
- **Statement 2:** Rocket takes flight due to combustion of fuel and does not move under the gravity effect

alone

3

Statement 1: A body, whatever its motion is always at rest in a frame of reference which is fixed to the

body itself

Statement 2: The relative velocity of a body with respect to itself is zero

4

- **Statement 1:** The equation of motion can be applied only if acceleration is along the direction of
- velocity and is constant

 Statement 2: If the acceleration of a body is constant then its motion is known as uniform motion

5

Statement 1: A bus moving due north takes a turn and starts moving towards east with same speed.

There will be no change in the velocity of bus

Statement 2: Velocity is a vector-quantity

6

Statement 1: A negative acceleration of a body can be associated with a 'speeding up' of the body

	Statement 2:	Increase in speed of a moving body is independent of its direction of motion					
7							
	Statement 1:	Position-time graph of a stationary object is a straight line parallel to time axis					
	Statement 2:	For a stationary object, position does not change with time					
8							
	Statement 1:	A positive acceleration of a body can be associated with a 'slowing down' of the body					
	Statement 2:	Acceleration is vector quantity					
9							
	Statement 1:	For an observer looking out through the window of a fast moving train, the nearby objects appear to move in the opposite direction to the train, while the distant objects appear to be stationary					
	Statement 2:	If the observer and the object are moving at velocities \vec{V}_1 and \vec{V}_2 respectively with reference to a laboratory frame, the velocity of the object with respect to the observer is $\vec{V}_2 - \vec{V}_1$					
10							
	Statement 1:	A positive acceleration of a body can be associated with a 'slowing down' of the body					
	Statement 2:	Acceleration is vector quantity					
11							
	Statement 1:	The position-time graph of a uniform motion in one dimension of a body can have					
	Statement 2:	negative slope When the speed of body decreases with time, the position-time graph of the moving body can have negative slope					
12		can have negative stope					
	Statement 1:	A body may be accelerated even when it is moving uniformly					
	Statement 2:	When direction of motion of the body is changing then body may have acceleration					
13							
	Statement 1:	Rocket in flight is not an illustration of projectile					
	Statement 2:	Rocket takes flight due to combustion of fuel and does not move under the gravity effect					
14		alone					
	Statement 1:	The speedometer of an automobile measure the average speed of the automobile					
	Statement 2:	Average velocity is equal to total displacement per total time taken					
15							
	Statement 1:	The average and instantaneous velocities have same value in a uniform motion					

CLICK HERE >>>

	Statement 2:	In uniform motion, the velocity of an object increases uniformly
16		
	Statement 1:	A body is dropped from a height of 40.0m. After it falls by half the distance, the acceleration due to gravity ceases to act. The velocity with which it hits the ground is
	Statement 2:	$20\text{ms}^{-1}(\text{Take g} = 10\text{ms}^{-2})$ $v^2 = u^2 + 2as$
17		
	Statement 1:	An object can have constant speed is a scalar quantity
	Statement 2:	Speed is a scalar but velocity is a vector quantity
18		
	Statement 1:	A body falling freely may do so with constant velocity
	Statement 2:	The body falls freely, when acceleration of a body is equal to acceleration due to gravity
19		
	Statement 1:	Velocity-time graph for an object in uniform motion along a straight path is a straight line parallel to the time axis
	Statement 2:	In uniform motion of an object velocity increases as the square of time elapsed
20		
	Statement 1:	A body having non-zero acceleration can have a constant velocity
	Statement 2:	Acceleration is the rate of change of velocity
21		
	Statement 1:	The relative velocity between any two bodies moving in opposite direction is equal to sum of the velocities of two bodies
	Statement 2:	Sometimes relative velocity between two bodies is equal to difference in velocities of the two
22		
	Statement 1:	The position-time graph of a body moving uniformly is a straight line parallel to position axis
	Statement 2:	The slope of position-time graph in a uniform motion gives the velocity of an object
23		
	Statement 1:	A bus moving due north takes a turn and starts moving towards east with same speed. There will be no change in the velocity of bus
	Statement 2:	Velocity is a vector-quantity
24		
	Statement 1:	Position-time graph of a stationary object is a straight line parallel to time axis
	Statement 2:	For a stationary object, position does not change with time

25

Statement 1: A body moving with a uniform velocity is in equilibrium.

Statement 2: A boy can move with a uniform velocity if a constant force is acting on it.

26

Statement 1: For an observer looking out through the window of a fast moving train, the nearby objects appear to move in the opposite direction to the train, while the distant objects appear to be stationary

Statement 2: If the observer and the object are moving at velocities \vec{V}_1 and \vec{V}_2 respectively with reference to a laboratory frame, the velocity of the object with respect to the observer is $\vec{V}_2 - \vec{V}_1$

27

Statement 1: A body having non-zero acceleration can have a constant velocity

Statement 2: Acceleration is the rate of change of velocity

28

Statement 1: The relative velocity between any two bodies moving in opposite direction is equal to sum of the velocities of two bodies

Statement 2: Sometimes relative velocity between two bodies is equal to difference in velocities of the two

29

Statement 1: Distance-time graph of the motion of a body having uniformly accelerated motion is a straight line inclined to the time axis

Statement 2: Distance travelled by a body having uniformly accelerated motion is directly proportional to the square of the time taken

30

Statement 1: The average velocity of the object over an interval of time is either smaller than or equal to the average speed of the object over the same interval

Statement 2: Velocity is vector quantity and speed is a scalar quantity

31

Statement 1: The position-time graph of a uniform motion in one dimension of a body can have negative slope

Statement 2: When the speed of body decreases with time, the position-time graph of the moving body can have negative slope

32

Statement 1: The position-time graph of a body moving uniformly is a straight line parallel to position axis

Statement 2: The slope of position-time graph in a uniform motion gives the velocity of an object

33

Statement 1: Displacement of a body is vector sum of the area under velocity-time graph

	Statement 2:	Displacement is a vector quantity
34		
	Statement 1:	Displacement of a body is vector sum of the area under velocity-time graph
	Statement 2:	Displacement is a vector quantity
35		
	Statement 1:	Distance-time graph of the motion of a body having uniformly accelerated motion is a
	Statement 2:	straight line inclined to the time axis Distance travelled by a body having uniformly accelerated motion is directly proportional
36		to the square of the time taken
30	Ct	
		A body falling freely may do so with constant velocity
	Statement 2:	The body falls freely, when acceleration of a body is equal to acceleration due to gravity
37		
	Statement 1:	A body, whatever its motion is always at rest in a frame of reference which is fixed to the body itself
	Statement 2:	The relative velocity of a body with respect to itself is zero
38		
	Statement 1:	Displacement of a body may be zero when distance travelled by it is not zero
	Statement 2:	The displacement is the longest distance between initial and final position
39		
	Statement 1:	The slope of displacement-time graph of a body moving with high velocity is steeper than
	Statement 2:	the slope of displacement-time graph of a body with low velocity Slope of displacement-time graph = Velocity of the body
40		
	Statement 1:	The relative velocity between any two bodies may be equal to sum of the velocities of two
		bodies.
	Statement 2:	Some times, relative velocity between two bodies may be equal to difference in velocities of the two.
41		
	Statement 1:	The average velocity of the object over an interval of time is either smaller than or equal
	Statement 2:	to the average speed of the object over the same interval Velocity is vector quantity and speed is a scalar quantity
42		
	Statement 1:	The equation of motion can be applied only if acceleration is along the direction of
		velocity and is constant
	Statement 2:	If the acceleration of a body is constant then its motion is known as uniform motion

43 Statement 1: The slope of displacement-time graph of a body moving with high velocity is steeper than the slope of displacement-time graph of a body with low velocity Slope of displacement-time graph = Velocity of the body Statement 2: 44 **Statement 1:** An object can have constant speed is a scalar quantity **Statement 2:** Speed is a scalar but velocity is a vector quantity 45 Statement 1: Displacement of a body may be zero when distance travelled by it is not zero Statement 2: The displacement is the longest distance between initial and final position 46 Statement 1: The average and instantaneous velocities have same value in a uniform motion Statement 2: In uniform motion, the velocity of an object increases uniformly 47 **Statement 1:** A car moving with a speed of 25ms^{-1} takes U turn in 5 s, without changing its speed. The average acceleration during these 5 s is 5ms⁻². Statement 2: Acceleration= change in velocity time taken 48 Statement 1: A negative acceleration of a body can be associated with a 'speeding up' of the body Statement 2: Increase in speed of a moving body is independent of its direction of motion 49 **Statement 1:** Velocity-time graph for an object in uniform motion along a straight path is a straight line parallel to the time axis Statement 2: In uniform motion of an object velocity increases as the square of time elapsed 50 **Statement 1:** The position-time graph of a uniform motion in one dimension of a body can have negative slope. **Statement 2:** When the speed of body decreases with time, the position-time graph of the moving body has negative slope. 51 **Statement 1:** A body may be accelerated even when it is moving uniformly Statement 2: When direction of motion of the body is changing then body may have acceleration

MOTION IN A STRAIGHT LINE

	: ANSWER KEY:														
1)	d	2)	a	3)	a	4)	d	29)	d	30)	a	31)	c	32)	d
5)	d	6)	b	7)	a	8)	b	33)	a	34)	a	35)	d	36)	d
9)	b	10)	b	11)	c	12)	d	37)	a	38)	c	39)	a	40)	b
13)	a	14)	d	15)	c	16)	a	41)	a	42)	d	43)	a	44)	a
17)	a	18)	d	19)	c	20)	d	45)	c	46)	c	47)	d	48)	b
21)	b	22)	d	23)	d	24)	a	49)	c	50)	c	51)	d		
25)	c	26)	b	27)	d	28)	b								

MOTION IN A STRAIGHT LINE

: HINTS AND SOLUTIONS :

1 (d)

Speedometer measures instantaneous speed of automobile

2 (a)

Motion of rocket is based on action reaction phenomena and is governed by rate of fuel burning causing the change in momentum of ejected gas

3 (a)

A body has no relative motion with respect to itself. Hence if a frame of reference of the body is fixed, then the body will be always at relative rest in this frame of reference

4 (d)

Equation of motion can be applied if the acceleration is in opposite direction to that of velocity and uniform motion mean the acceleration is zero

5 (d)

As velocity is a vector quantity, its value changes with change in direction. Therefore when a bus takes a turn from north to east its velocity will also change

6 **(b)**

A body having negative acceleration can be associated with a speeding up, if object moves along negative X-direction with increasing speed

7 (a)

Position- time graph for a stationary object is a straight line parallel to time axis showing that no change in position with time

8 **(b)**

A body having positive acceleration can be associated with slowing down, as time rate of change of velocity decreases, but velocity increases with time, from graph it is clear that slope with time axis decreases in speed *i. e.* retardation in motion

9 **(b)**

Statement 1 is based on visual experience.

Statement 2 is formula of relative velocity. But it does not explains Statement 1. The correct explanation of Statement 1 is due to visual perception of motion (due angular velocity). The object appears to be faster when its angular velocity is greater w.r.t. observer

10 **(b)**

A body having positive acceleration can be associated with slowing down, as time rate of change of velocity decreases, but velocity increases with time, from graph it is clear that slope with time axis decreases in speed *i. e.* retardation in motion

11 (c)

Negative slope of position time graph represents that the body is moving towards the negative direction and if the slope of the graph decrease with time then it represents the decrease in speed *i. e.* retardation in motion

12 (d)

The uniform motion of a body means that the body is moving with constant velocity, but if the direction of motion is changing (such as in uniform circular motion), its velocity changes and thus acceleration is produced in uniform motion

13 (a)

Motion of rocket is based on action reaction phenomena and is governed by rate of fuel burning causing the change in momentum of ejected gas

14 (d)

Speedometer measures instantaneous speed of automobile

15 (c)

An object is said to be in uniform motion if it undergoes equal displacement in equal intervals if time

and $v_{ins} = \frac{s}{t}$

thus, in uniform motion average and instantaneous velocities have same value and body moves with constant velocity

16 (a)

Here, u = 0, $a = 10 \text{ms}^{-2}$, s = 40/2 = 20 m

Using the relation $v^2 = u^2 + 2as = 0 + 2 \times 10 \times 20 = 400$ or $v = 20 \text{ms}^{-1}$. Thus both the Assertion and Reason are correct and Reason is the correct explanation of Assertion.

17 (a)

Since velocity is a vector quantity, hence as its direction changes keeping magnitude constant, velocity is said to be changed. But for constant speed in equal time interval distance travelled should be equal

18 **(d)**

When a body falling freely, only gravitational force acts on it in vertically downward direction. Due to this downward acceleration the velocity of a body increases and will be maximum when the body touches the ground

19 (c)

In uniform motion the object moves with uniform velocity, the magnitude of its velocity at different instant i.e. at t=0, t=1sec, t=2sec,will always be constant. Thus velocity-time graph for an object in uniform motion along a straight path is a straight line parallel to time axis

20 (d)

As per definition, acceleration is the rate of change of velocity, *i. e.* $\vec{a} = \frac{d\vec{v}}{dt}$.

If velocity is constant $d\vec{v}/dt = 0$, $\vec{a} = 0$

Therefore, if a body has constant velocity it cannot have non zero acceleration

21 **(b)**

When two bodies are moving in opposite direction, relative velocity between them is equal to sum of the velocity of bodies. But if the bodies are moving in same direction their relative velocity is equal to difference in velocity of the bodies

22 (d)

If the position-time graph of a body moving uniformly is a straight line parallel to position axis, it means that the position of body is changing at constant time. The statement is abrupt and shows that the velocity of body is infinite

23 (d)

As velocity is a vector quantity, its value changes with change in direction. Therefore when a bus takes a turn from north to east its velocity will also change

24 (a)

Position- time graph for a stationary object is a straight line parallel to time axis showing that no change in position with time

25 (c)

Here Assertion is correct but Reason is wrong because a constant force on body will produce a constant acceleration in the body.

26 **(b)**

Statement 1 is based on visual experience.
Statement 2 is formula of relative velocity. But it does not explains Statement 1. The correct explanation of Statement 1 is due to visual perception of motion (due angular velocity). The object appears to be faster when its angular velocity is greater w.r.t. observer

27 (d)

As per definition, acceleration is the rate of change of velocity, *i. e.* $\vec{a} = \frac{d\vec{v}}{dt}$.

If velocity is constant $d\vec{v}/dt = 0$, $\vec{a} = 0$

Therefore, if a body has constant velocity it cannot have non zero acceleration

28 **(b)**

When two bodies are moving in opposite direction, relative velocity between them is equal to sum of the velocity of bodies. But if the bodies are moving in same direction their relative velocity is equal to difference in velocity of the bodies

29 (d)

For distance-time graph, a straight line inclined to tome axis measures uniform speed for which acceleration is zero and for uniformly accelerated motion $S \propto t^2$

31 (c)

Negative slope of position time graph represents that the body is moving towards the negative direction and if the slope of the graph decrease with time then it represents the decrease in speed *i. e.* retardation in motion

32 (d)

If the position-time graph of a body moving uniformly is a straight line parallel to position axis, it means that the position of body is changing at constant time. The statement is abrupt and shows that the velocity of body is infinite

33 (a)

According to definition, displacement= velocity \times time

Since displacement is a vector quantity so its value is equal to the vector sum of the area under velocity-time graph

34 (a)

According to definition, displacement= velocity \times time

Since displacement is a vector quantity so its value is equal to the vector sum of the area under velocity-time graph

35 (d)

For distance-time graph, a straight line inclined to tome axis measures uniform speed for which acceleration is zero and for uniformly accelerated motion $S \propto t^2$

36 (d)

When a body falling freely, only gravitational force acts on it in vertically downward direction. Due to this downward acceleration the velocity of a body increases and will be maximum when the body touches the ground

37 **(a)**

A body has no relative motion with respect to itself. Hence if a frame of reference of the body is fixed, then the body will be always at relative rest in this frame of reference

38 (c)

The displacement is the shortest distance between initial and final position. When final position of a body coincides with its initial

position, displacement is zero, but the distance travelled is not zero

39 (a)

Since slope of displacement-time graph measures velocity of an object

40 **(b)**

When two bodies are moving in opposite directions, relative velocity between them is equal to sum of the velocities of two bodies.

42 (d)

Equation of motion can be applied if the acceleration is in opposite direction to that of velocity and uniform motion mean the acceleration is zero

43 (a)

Since slope of displacement-time graph measures velocity of an object

44 (a)

Since velocity is a vector quantity, hence as its direction changes keeping magnitude constant, velocity is said to be changed. But for constant speed in equal time interval distance travelled should be equal

45 (c)

The displacement is the shortest distance between initial and final position. When final position of a body coincides with its initial position, displacement is zero, but the distance travelled is not zero

46 (c)

An object is said to be in uniform motion if it undergoes equal displacement in equal intervals if time

and
$$v_{ins} = \frac{s}{t}$$

thus, in uniform motion average and instantaneous velocities have same value and body moves with constant velocity

47 (d)

$$Acceleration = \frac{\text{change in velocity}}{\text{time taken}}$$

$$=\frac{25-(-25)}{5}=10$$
ms⁻².

Hence assertion is wrong but Reason is correct.

48 **(b)**

A body having negative acceleration can be associated with a speeding up, if object moves along negative X-direction with increasing speed

49 (c)

In uniform motion the object moves with uniform velocity, the magnitude of its velocity at different instant i.e. at t=0, t=1sec, t=2sec,will always be constant. Thus velocity-time graph for an object in uniform motion along a straight path is a straight line parallel to time axis

50 (c)

The position-time graph of a moving body in one dimension can have negative slope if its velocity in negative

51 (d)

The uniform motion of a body means that the body is moving with constant velocity, but if the direction of motion is changing (such as in uniform circular motion), its velocity changes and thus acceleration is produced in uniform motion

